

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Virtual Special Issue – TOPOSYM 2016

A study on convergence and ideal convergence classes

D.N. Georgiou^a, A.C. Megaritis^{b,*}, G.A. Prinos^a

- ^a University of Patras, Department of Mathematics, 265 00 Patras, Greece
- ^b Technological Educational Institute of Western Greece, Department of Accounting and Finance, 302 00 Messolonghi, Greece

ARTICLE INFO

Article history: Received 18 September 2016 Received in revised form 7 October 2017 Accepted 24 November 2017 Available online 27 March 2018

MSC: 54A20

Keywords:
Convergence class
Semi-convergence class
Ideal convergence class
Ideal semi-convergence class

ABSTRACT

Let X be a non-empty set. We introduce semi-convergence classes on X in order to obtain a modification of classical Kelley's theorem. Subsequently, we do some further investigations on ideal convergence classes (see [7]). Finally, we introduce ideal semi-convergence classes \mathcal{C}' on X, in order to ensure the existence of a unique topology τ on X such that: a net $(s_d)_{d\in D}$ \mathcal{I} -semi-convergences (\mathcal{C}') to $x\in X$ i.e. $((s_d)_{d\in D}, x, \mathcal{I}) \in \mathcal{C}'$, where \mathcal{I} is an ideal of D, if and only if $(s_d)_{d\in D}$ \mathcal{I} -converges to x relative to the topology τ .

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Nets and filters are two different theories of convergence, which both successfully generalize the convergence of sequences. The development of a convergence theory via nets was first introduced by E. H. Moore [16,17] and in [18], jointly with H. L. Smith. Later G. Birkhoff [1] and subsequently J. W. Tukey [24] gave foundational and systematic treatment of the concept. Finally, J. L. Kelley [8,9] made refinements in the theory of Moore–Smith convergence, extended and simplified previous results. He gave a characterization of convergence of nets in arbitrary topological spaces in the following manner: Given a class \mathcal{C} of pairs (s, x), where s is a net in X and x is a point of X, he found conditions on this class that guarantee the existence of a unique topology τ on X, such that $(s, x) \in \mathcal{C}$ if and only if s converges to s, relative to the topology s.

On the other side the concept of convergence of a sequence has been extended to statistical convergence, with the assistance of the natural density of subsets of the set \mathbb{N} of positive integers. Statistical convergence

 $\label{lem:email$

^{*} Corresponding author.

was introduced by H. Fast [5], I. J. Schoenberg [22], H. Steinhaus [23], and A. Zygmund [25] and soon became an active area of research. J. A. Fridy [6], T. Šalát [20], G. Di Maio and L. D. R. Kočinac [14] and many others made substantial contributions to the theory. Applications of statistical convergence in mathematical analysis and the theory of numbers can be found in [2–4,14,15].

The concept of \mathcal{I} -convergence of a sequence of real numbers, where \mathcal{I} is an ideal on the natural numbers, was first introduced in [10] and it is based on the notion of the ideal \mathcal{I} of subsets of the set \mathbb{N} . Later it was extended to general spaces in [11,12,19,21]. The \mathcal{I} -convergence is a natural generalization of usual convergence and statistical convergence of sequences. B. K. Lahiri and P. Das in [12,13] defined and examined the notion of \mathcal{I} -convergence of sequences and nets in general topological spaces.

In this paper, we introduce and study the concepts of semi-convergence classes and ideal semi-convergence classes. Specifically, in Section 2 we give some preliminaries which will be used later. In Section 3 we define the notion of a semi-convergence class and we obtain a modification of classical Kelley's theorem. In Section 4 we present propositions concerning the ideal convergence classes. Finally, in Section 5 we define the notion of an ideal semi-convergence class in order to modify the ideal convergence classes theorem (see [7]).

2. Preliminaries

In this section, we recall some of the basic concepts related to the usual convergence and ideal convergence of nets in topological spaces and we refer to [9] and [13] for more details.

Let D be a non-empty set. A non-empty family \mathcal{I} of subsets of D is called *ideal* if \mathcal{I} has the following properties:

- (1) If $A \in \mathcal{I}$ and $B \subseteq A$, then $B \in \mathcal{I}$.
- (2) If $A, B \in \mathcal{I}$, then $A \cup B \in \mathcal{I}$.

The ideal \mathcal{I} is called *proper* if $D \notin \mathcal{I}$.

A partially preordered set D is called *directed* if every two elements of D have an upper bound in D.

If (D, \leqslant_D) and (E, \leqslant_E) are directed sets, then the Cartesian product $D \times E$ is directed by \leqslant , where $(d_1, e_1) \leqslant (d_2, e_2)$ if and only if $d_1 \leqslant_D d_2$ and $e_1 \leqslant_E e_2$. Also, if (E_d, \leqslant_d) is a directed set for each d in a set D, then the product

$$\prod_{d \in D} E_d = \{f: D \to \bigcup_{d \in D} E_d: f(d) \in E_d \text{ for all } d \in D\}$$

is directed by \leq , where $f \leq g$ if and only if $f(d) \leq_d g(d)$, for all $d \in D$.

A net in a set X is an arbitrary function s from a non-empty directed set D to X. If $s(d) = s_d$, for all $d \in D$, then the net s will be denoted by the symbol $(s_d)_{d \in D}$.

A net $(t_{\lambda})_{{\lambda}\in\Lambda}$ in X is said to be a *semisubnet* of the net $(s_d)_{d\in D}$ in X if there exists a function $\varphi:\Lambda\to D$ such that $t=s\circ\varphi$. We write $(t_{\lambda})_{{\lambda}\in\Lambda}^{\varphi}$ to indicate the fact that φ is the function mentioned above.

A net $(t_{\lambda})_{{\lambda}\in\Lambda}$ in X is said to be a *subnet* of the net $(s_d)_{d\in D}$ in X if there exists a function $\varphi:\Lambda\to D$ with the following properties:

- (1) $t = s \circ \varphi$, or equivalently, $t_{\lambda} = s_{\varphi(\lambda)}$ for every $\lambda \in \Lambda$.
- (2) For every $d \in D$ there exists $\lambda_0 \in \Lambda$ such that $\varphi(\lambda) \geqslant d$, whenever $\lambda \geqslant \lambda_0$.

Suppose that $(t_{\lambda})_{\lambda \in \Lambda}^{\varphi}$ is a semisubnet of the net $(s_d)_{d \in D}$ in X. For every ideal \mathcal{I} of the directed set D, we consider the family $\{A \subseteq \Lambda : \varphi(A) \in \mathcal{I}\}$. This family is an ideal of Λ which will be denoted by $\mathcal{I}_{\Lambda}(\varphi)$.

We say that a net $(s_d)_{d \in D}$ converges to a point $x \in X$ if for every open neighborhood U of x there exists a $d_0 \in D$ such that $s_d \in U$ for all $d \ge d_0$. In this case we write $\lim_{t \to D} s_d = x$.

Download English Version:

https://daneshyari.com/en/article/8904011

Download Persian Version:

https://daneshyari.com/article/8904011

<u>Daneshyari.com</u>