

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Splitting ultra-metrics by T_0 -ultra-quasi-metrics

Francky Mathieu Solofomananirina Tiantsoa, Hans-Peter A. Künzi*

 $Department\ of\ Mathematics\ and\ Applied\ Mathematics,\ University\ of\ Cape\ Town,\ Rondebosch\ 7701,\\ South\ Africa$

ARTICLE INFO

Article history: Received 29 July 2017 Received in revised form 21 February 2018 Accepted 5 March 2018 Available online 7 March 2018

MSC: 54E35 54F05 06A06

 $Keywords: \\ Ultra-metric space \\ Partial order \\ Quasi-pseudometric \\ T_0-ultra-quasi-metric \\ Splitting \\ Producing \\ Szpilrajn's Theorem \\ Robinsonian \\ Interval condition \\ GO-space \\$

ABSTRACT

Given a T_0 -ultra-quasi-metric u on a set X, we write u^s for its symmetrization $u \vee u^{-1}$. In this paper we show that there exists a T_0 -ultra-quasi-metric v on X such that $v \leq u$, $v^s = u^s$ and the specialization order of v is linear.

We also discuss connections of this statement with related results about Robinsonian dissimilarities and orderability of ultra-metrizable topological spaces.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The studies on ultra-quasi-pseudometrics in the present paper are related to the investigations completed in [2,3] by Gaba and Künzi on arbitrary quasi-pseudometrics. In [2,3] a partially ordered metric space (X, m, \leq) was said to be *produced* by a T_0 -quasi-metric d on X provided that the specialization order of d is equal to \leq and $d^s = d \vee d^{-1} = m$. In this way the authors obtained a (metric) theory of partially ordered metric spaces that is closely related to Nachbin's theory of uniform ordered topological spaces [7].

E-mail addresses: francky@aims.ac.za (F.M. Solofomananirina Tiantsoa), hans-peter.kunzi@uct.ac.za (H.-P.A. Künzi).

 $^{^{\,\,\,\,}}$ The authors would like to thank the National Research Foundation of South Africa for partial financial support (CPRR14071175245 and IFR1202200082).

^{*} Corresponding author.

In this paper we shall study similarly (partially) ordered ultra-metric spaces (X, m, \leq) such that there is a T_0 -ultra-quasi-metric d on X the specialization order of which is equal to \leq and $d^s = m$.

While (see Section 3) there are obvious similarities between the methods discussed in [2,3] and the techniques developed in this paper, in Section 4 some striking differences between the two theories will become apparent.

Somewhat in the spirit of Szpilrajn's Theorem (compare [2, Section 3]) the main result of this paper shows that given a T_0 -ultra-quasi-metric u on a set X, there exists a T_0 -ultra-quasi-metric v on X such that $v \le u$, $v^s = u^s$ and the specialization order of v is linear.

As a contrast, let us recall two facts mentioned by Gaba and Künzi:

- (1) In [3, Example 6] an example of a *metric* space (X, m) is given for which there does not exist a T_0 -quasi-metric d on X such that the induced topologies $\tau(d^s)$ and $\tau(m)$ are equal and the specialization order of d linear.
- (2) In [2, Example 5] the authors give an example of a finite metric space (X, m) such that there exists a T_0 -quasi-metric d on X that is minimal among those T_0 -quasi-metrics t on X satisfying $t^s = m$, but does not have a linear specialization order (compare also Example 6 below).

Throughout we discuss connections of our result with some other statements from the mathematical literature, belonging mainly to the theory of Robinsonian dissimilarities [11] and the theory of orderability of ultra-metrizable topological spaces [4].

2. Preliminaries

We first recall basic definitions from asymmetric topology (see for instance [1,5]; for quasi-pseudometrics and metrics see also [2,3]).

Definition 1. Let X be a set and $d: X \times X \to [0, \infty)$ a function mapping into the set $[0, \infty)$ of the nonnegative reals. Then d is an ultra-quasi-pseudometric on X if

- (a) d(x,x) = 0 whenever $x \in X$, and
- (b) $d(x,z) \le \max\{d(x,y),d(y,z)\} = d(x,y) \lor d(y,z)$ whenever $x,y,z \in X$.

We shall say that (X, d) is a T_0 -ultra-quasi-metric space provided that d also satisfies the following condition: For each $x, y \in X$, d(x, y) = 0 = d(y, x) implies that x = y.

Let d be an ultra-quasi-pseudometric on a set X. Then $d^{-1}: X \times X \to [0, \infty)$ defined by $d^{-1}(x, y) = d(y, x)$ whenever $x, y \in X$ is also an ultra-quasi-pseudometric on X, called the *conjugate* or *dual ultra-quasi-pseudometric* of d. Observe that if d is a T_0 -ultra-quasi-metric on X, then $d^s = \max\{d, d^{-1}\} = d \vee d^{-1}$ is an ultra-metric on X.

Recall that if d is an ultra-quasi-pseudometric on X, then the binary relation \leq on X defined by $x \leq_d y$ if and only if d(x,y) = 0 defines a partial preorder on X, which is called the *specialization (partial) preorder* of d on X. Note that \leq_d is a partial order if and only if d satisfies the T_0 -condition.

We partially order the set U(X) of all ultra-quasi-pseudometrics on a set X by setting $s \le t$ if $s(x,y) \le t(x,y)$ whenever $x,y \in X$.

Definition 2. Given a metric space (X, m) we shall call a quasi-pseudometric d on X m-splitting provided that $d^s = d \vee d^{-1} = m$. An m-splitting quasi-pseudometric d on X is called m-inimally m-splitting provided that whenever e is a quasi-pseudometric on X with $e \leq d$ and $e^s = m$, then e = d.

Download English Version:

https://daneshyari.com/en/article/8904038

Download Persian Version:

https://daneshyari.com/article/8904038

<u>Daneshyari.com</u>