

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Variations on known and recent cardinality bounds

Fortunata Aurora Basile^a, Maddalena Bonanzinga^a, Nathan Carlson^b

- ^a University of Messina, Italy
- ^b California Lutheran University, United States

ARTICLE INFO

Article history: Received 2 July 2017 Accepted 8 March 2018 Available online 12 March 2018

MSC: 54A25

Keywords:
Urysohn θ -closure
Pseudocharacter
Almost Lindelöf degree
Hausdorff point separating weight

ABSTRACT

Sapirovskii [16] proved that $|X| \leq \pi \chi(X)^{c(X)\psi(X)}$, for a regular space X. We introduce the θ -pseudocharacter of a Urysohn space X, denoted by $\psi_{\theta}(X)$, and prove that the previous inequality holds for Urysohn spaces replacing the bounds on cellularity $c(X) \le \kappa$ and on pseudocharacter $\psi(X) \le \kappa$ with a bound on Urysohn cellularity $Uc(X) \leq \kappa$ (which is a weaker condition because $Uc(X) \leq c(X)$) and on θ -pseudocharacter $\psi_{\theta}(X) \leq \kappa$ respectively (note that in general $\psi(\cdot) \leq \psi_{\theta}(\cdot)$ and in the class of regular spaces $\psi(\cdot) = \psi_{\theta}(\cdot)$). Further, in [6] the authors generalized the Dissanayake and Willard's inequality: $|X| \leq 2^{aL_c(X)\chi(X)}$, for Hausdorff spaces X[21], in the class of n-Hausdorff spaces and de Groot's result: $|X| \leq 2^{hL(X)}$, for Hausdorff spaces [10], in the class of T_1 spaces (see Theorems 2.22 and 2.23 in [6]). In this paper we restate Theorem 2.22 in [6] in the class of n-Urysohn spaces and give a variation of Theorem 2.23 in [6] using new cardinal functions, denoted by UW(X), $\psi w_{\theta}(X)$, θ -aL(X), $h\theta$ -aL(X), θ - $aL_{c}(X)$ and θ - $aL_{\theta}(X)$. In [5] the authors introduced the Hausdorff point separating weight of a space X denoted by Hpsw(X)and proved a Hausdorff version of Charlesworth's inequality $|X| \leq psw(X)^{L(X)\psi(X)}$ [7]. In this paper, we introduce the Urysohn point separating weight of a space X, denoted by Upsw(X), and prove that $|X| \leq Upsw(X)^{\theta-aL_c(X)}\psi(X)$, for a Urysohn space X.

 \odot 2018 Elsevier B.V. All rights reserved.

1. Introduction

We shall follow notations from [11] and [13]. Recall that a space X is Urysohn if for every two distinct points $x, y \in X$ there are open sets U and V such that $x \in U$, $y \in V$ and $\overline{U} \cap \overline{V} = \emptyset$.

For a space X, we denote by $\chi(X)$ (resp., $\psi(X)$, $\pi\chi(X)$, c(X), t(X)) the character, (resp., pseudocharacter, π -character, cellularity, tightness) of a space X [11].

The θ -closure of a set A in a space X is the set $cl_{\theta}(A) = \{x \in X : \text{ for every neighborhood } U \ni x, \overline{U} \cap A \neq \emptyset\}$; A is said to be θ -closed if $A = cl_{\theta}(A)$ [20]. Considering the fact that the θ -closure operator is not in general idempotent, Bella and Cammaroto defined in [2] the θ -closed hull of a subset A of a space X,

E-mail address: aurorabasile@yahoo.it (F.A. Basile).

denoted by $[A]_{\theta}$, that is the smallest θ -closed subset of X containing A. The θ -tightness of X at $x \in X$ is $t_{\theta}(x, X) = \min\{\kappa : \text{for every } A \subseteq X \text{ with } x \in cl_{\theta}(A) \text{ there exists } B \subseteq A \text{ such that } |B| \leq \kappa \text{ and } x \in cl_{\theta}(B);$ the θ -tightness of X is $t_{\theta}(X) = \sup\{t_{\theta}(x, X) : x \in X\}$ [8]. We have that tightness and θ -tightness are independent (see Example 11 and Example 12 in [9]), but if X is a regular space then $t(X) = t_{\theta}(X)$. The θ -density of X is $d_{\theta}(X) = \min\{\kappa : A \subseteq X, A \text{ is a dense subset of } X \text{ and } |A| \leq \kappa\}$. We say that a subset A of X is θ -dense in X if $cl_{\theta}(A) = X$.

If X is a Hausdorff space, the closed pseudocharacter of a point x in X is $\psi_c(x, X) = \min\{|\mathcal{U}| : \mathcal{U} \text{ is a family of open neighborhoods of } x \text{ and } \{x\} \text{ is the intersection of the closure of } \mathcal{U}\};$ the closed pseudocharacter of X is $\psi_c(X) = \sup\{\psi_c(x, X) : x \in X\}$ (see [17] where it is called $S\psi(X)$). The Urysohn pseudocharacter of X, denoted by $U\psi(X)$, is the smallest cardinal κ such that for each point $x \in X$ there is a collection $\{V(\alpha, x) : \alpha < \kappa\}$ of open neighborhoods of x such that if $x \neq y$, then there exist $\alpha, \beta < \kappa$ such that $\overline{V(\alpha, x)} \cap \overline{V(\beta, y)} = \emptyset$ [18]; this cardinal function is defined only for Urysohn spaces. The Urysohn-cellularity of a space X is $Uc(X) = \sup\{|\mathcal{V}| : \mathcal{V} \text{ is Urysohn-cellular}\}$ (a collection \mathcal{V} of open subsets of X is called Urysohn-cellular, if O_1 , O_2 in \mathcal{V} and $O_1 \neq O_2$ implies $\overline{O_1} \cap \overline{O_2} = \emptyset$). Of course, $Uc(X) \leq c(X)$.

The almost Lindelöf degree of a subset Y of a space X is $aL(Y,X) = \min\{\kappa : \text{ for every cover } \mathcal{V} \text{ of } Y \text{ consisting of open subsets of } X, \text{ there exists } \mathcal{V}' \subseteq \mathcal{V} \text{ such that } |\mathcal{V}'| \leq \kappa \text{ and } \bigcup \{\overline{V} : V \in \mathcal{V}'\} = Y\}.$ The function aL(X,X) is called the almost Lindelöf degree of X and denoted by aL(X) (see [21] and [14]). The almost Lindelöf degree of X with respect to closed subsets of X is $aL_c(X) = \sup\{aL(C,X) : C \subseteq X \text{ is closed}\}.$

For a subset A of a space X we will denote by $[A]^{\leq \lambda}$ the family of all subsets of A of cardinality $\leq \lambda$. Sapirovskii [16] proved that $|X| \leq \pi \chi(X)^{c(X)\psi(X)}$, for a regular space X. Later Shu-Hao [17] proved that the previous inequality holds in the class of Hausdorff spaces by replacing the pseudocharacter with the closed pseudocharacter. In Section 2 we introduce the θ -pseudocharacter of a Urysohn space X, denoted by $\psi_{\theta}(X)$ and prove the following result:

• $|X| \leq \pi \chi(X)^{Uc(X)\psi_{\theta}(X)}$ for a Urysohn space X.

A space X is n-Urysohn [4] (resp. n-Hausdorff [3]), $n \in \omega$, if for every $x_1, x_2, ..., x_n \in X$ there exist open subsets $U_1, U_2, ..., U_n$ of X such that $x_1 \in U_1, x_2 \in U_2, ..., x_n \in U_n$ and $\bigcap_{i=1}^n \overline{U_i} = \emptyset$ (resp. $\bigcap_{i=1}^n U_i = \emptyset$). In [6] the authors generalized the Dissanayake and Willard's inequality: $|X| \leq 2^{aL_c(X)\chi(X)}$, for Hausdorff spaces X [21], in the class of n-Hausdorff spaces and de Groot's result: $|X| \leq 2^{hL(X)}$, for Hausdorff spaces [10], in the class of T_1 spaces. In particular, they used two new cardinal functions, denoted by HW(X), $\psi w(X)$, to obtain the following results:

- If X is a T_1 n-Hausdorff $(n \in \omega)$ space, then $|X| \leq HW(X)2^{aL_c(X)\chi(X)}$.
- If X is a T_1 space, then $|X| \leq HW(X)\psi w(X)^{haL(X)}$.

In Section 3 we introduce new cardinal functions, denoted by UW(X), $\psi w_{\theta}(X)$, θ -aL(X), $h\theta$ -aL(X), θ - $aL_c(X)$ and θ - $aL_c(X)$ such that $HW(X) \leq UW(X)$, $\psi w(X) \leq \psi w_{\theta}(X)$ and θ - $aL(X) \leq aL(X)$, restate Theorem 2.22 in [6] in the class of n-Urysohn spaces and give a variation of Theorem 2.23 in [6]. In particular, we prove the following results:

- If X is a T_1 n-Urysohn $(n \in \omega)$ space, then $|X| \leq UW(X)2^{\theta-aL_{\theta}(X)\chi(X)}$.
- If X is a T_1 space then $|X| < UW(X)\psi w_{\theta}(X)^{h\theta-aL(X)}$.

In [5] the authors introduced the Hausdorff point separating weight of a space X denoted by Hpsw(X) and proved a Hausdorff version of Charlesworth's inequality $|X| \leq psw(X)^{L(X)\psi(X)}$ [7]. In a similar way, in

Download English Version:

https://daneshyari.com/en/article/8904063

Download Persian Version:

https://daneshyari.com/article/8904063

Daneshyari.com