Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Topologies generated by porosity and maximal additive and multiplicative families for porous continuous functions

Stanisław Kowalczyk, Małgorzata Turowska*

Institute of Mathematics, Pomeranian University in Slupsk, Kozietulskiego 6-7, 76-200 Slupsk, Poland

ABSTRACT

A R T I C L E I N F O

Article history: Received 30 October 2017 Received in revised form 2 February 2018 Accepted 14 February 2018 Available online 19 February 2018

MSC: 54A10 54C30 26A15

Keywords: Porosity Strong porosity Porouscontinuity Maximal classes Topology generated by porosity

1. Introduction

Let \mathbb{N} and \mathbb{R} denote the set of all positive integers and the set of all real numbers, respectively. For $f: Y \to Z$ and $A \subset Y$, by $f_{\uparrow A}$ we mean the restriction of f to A. The symbol (X, ϱ) always stands for a metric space, cl(A) and Int(A) denote a closure and an interior of $A \subset X$. The aim of our paper is describing topologies on a metric space generated by porosity and strong porosity and their connections with the notions of porous continuity.

The open ball in (X, ϱ) with the center $x \in X$ and the radius R will be denoted by B(x, R). Similarly, by S(x, R) and $\overline{B}(x, R)$ we will denote a sphere and a closed ball with the center x and the radius R.

First, we recall the definitions of porosities. Let $M \subset X$, $x \in X$ and R > 0. Then, according to [8], we denote the supremum of the set of all r > 0 for which there exists $z \in X$ such that $B(z,r) \subset B(x,R) \setminus M$

* Corresponding author.

multiplicative classes for porous continuous functions S_0 and M_1 . Some other properties of superporosity and strong superporosity are considered.

L. Zajíček in 1986 and V. Kelar in 1990 defined topologies p and s generated by

the notions of porosity and strong porosity. Applying these notions, we described

maximal additive classes for porous continuous functions \mathcal{S}_0 , \mathcal{M}_1 and \mathcal{P}_0 defined by

J. Borsík and J. Holos in 2014. Furthermore, we defined new family of topologies

generated by porosity and strong porosity, which are used to studying maximal

© 2018 Elsevier B.V. All rights reserved.

E-mail addresses: stanislaw.kowalczyk@apsl.edu.pl (S. Kowalczyk), malgorzata.turowska@apsl.edu.pl (M. Turowska).

by $\gamma(x, R, M)$. The number $p(M, x) = 2 \limsup_{R \to 0^+} \frac{\gamma(x, R, M)}{R}$ is called the porosity of M at x. Obviously, $p(M, x) = p(\operatorname{cl}(M), x)$ for $M \subset X$ and $x \in X$. Surprisingly, p(M, x) may be equal to ∞ (for example if $X = (-\infty, -1] \cup \{0\} \cup \{\frac{1}{n!} : n \ge 1\}$ then $p((-\infty, -1], 0) = \infty$). Nevertheless if $x \in M$ then $p(M, x) \le 2$. Furthermore, it is easily seen that in a normed space one have $p(M, x) \le 2$ and if $x \in M$ then $p(M, x) \le 1$.

We say that the set M is porous at $x \in X$ if p(M, x) > 0. The set M is called porous if M is porous at each point $x \in M$. We say that the set M is strongly porous at x if $p(M, x) \ge 1$ and the set M is called strongly porous if M is strongly porous at each $x \in M$. Obviously every strongly porous set is porous and every porous set is nowhere dense. Moreover, none of reverse inclusions is true.

Remark 1.1. Let (X, ϱ) be a metric space, $A \subset M \subset X$ and $x \in X$. If p(A, x) = 0 then p(M, x) = 0.

In some applications we will use notions of porosities for subsets of \mathbb{R} . Due to L. Zajíček, J. Borsík and J. Holos [8,1] we give another definitions of porosities of subsets of the real line. Let the symbol |J| stands for the length of an interval $J \subset \mathbb{R}$. For a set $A \subset \mathbb{R}$ and an interval $I \subset \mathbb{R}$ let $\Lambda(A, I)$ denote the length of the largest open subinterval of I having an empty intersection with A. Let $x \in \mathbb{R}$. Then, according to [1,8], the right-porosity of the set A at x is defined as

$$p^+(A, x) = \limsup_{h \to 0^+} \frac{\Lambda(A, (x, x+h))}{h},$$

the left-porosity of the set A at x is defined as

$$p^{-}(A, x) = \limsup_{h \to 0^{+}} \frac{\Lambda(A, (x - h, x))}{h},$$

and the porosity of A at x is defined as

$$p(A, x) = \max \left\{ p^{-}(A, x), p^{+}(A, x) \right\}.$$

It is easy to see that for any $A \subset \mathbb{R}$ if $x \in A$ then definitions of p(A, x) from [8] and from [1] are equivalent.

In [1,7] there are studied families of porous continuous functions $f: \mathbb{R} \to \mathbb{R}$. Applying their ideas we convert this concept for real functions defined on a metric space.

Definition 1.2. Let (X, ϱ) be a metric space and $f: X \to \mathbb{R}$ and $x \in X$. The function f will be called:

- \mathcal{P}_0 -continuous at x if there exists a set $A \subset X$ such that $x \in A$, $p(X \setminus A, x) > 0$ and $f_{\uparrow A}$ is continuous at x;
- S_0 -continuous at x if for each $\varepsilon > 0$ there exists a set $A \subset X$ such that $x \in A$, $p(X \setminus A, x) > 0$ and $f(A) \subset (f(x) \varepsilon, f(x) + \varepsilon);$
- \mathcal{M}_1 -continuous at x if there exists a set $A \subset X$ such that $x \in A$, $p(X \setminus A, x) \ge 1$ and $f_{\uparrow A}$ is continuous at x.

If f is \mathcal{P}_0 -continuous, \mathcal{S}_0 -continuous, \mathcal{M}_1 -continuous at every point of X then we say that f is \mathcal{P}_0 -continuous, \mathcal{S}_0 -continuous, \mathcal{M}_1 -continuous, respectively.

All of these functions are called porous continuous functions.

We will denote the class of \mathcal{P}_0 -continuous, \mathcal{S}_0 -continuous, \mathcal{M}_1 -continuous functions by \mathcal{P}_0 , \mathcal{S}_0 , \mathcal{M}_1 , respectively.

Obviously, if f is continuous at some x then f is porous continuous (in each sense) at x. Mainly, we will consider some special kind of metric spaces defined below.

Download English Version:

https://daneshyari.com/en/article/8904074

Download Persian Version:

https://daneshyari.com/article/8904074

Daneshyari.com