

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Virtual Special Issue – In memory of Professor Sibe Mardešić

Asymptotic dimension of coarse spaces via maps to simplicial complexes [☆]

M. Cencelj^a, J. Dvdak^b, A. Vavpetič^{c,*}

- ^a IMFM, Pedagoška fakulteta, Univerza v Ljubljani, Kardeljeva ploščad 16, SI-1111 Ljubljana, Slovenija
- ^b University of Tennessee, Knoxville, TN 37996, USA
- ^c Fakulteta za Matematiko in Fiziko, Univerza v Ljubljani, Jadranska ulica 19, SI-1111 Ljubljana, Slovenija

ARTICLE INFO

Article history: Received 30 December 2016 Received in revised form 19 April 2017 Available online 23 February 2018

MSC: primary 54F45 secondary 55M10

Keywords:
Asymptotic dimension
Coarse geometry
Lipschitz maps
Property A

ABSTRACT

It is well-known that a paracompact space X is of covering dimension at most n if and only if any map $f\colon X\to K$ from X to a simplicial complex K can be pushed into its n-skeleton $K^{(n)}$. We use the same idea to characterize asymptotic dimension in the coarse category of arbitrary coarse spaces. Continuity of the map f is replaced by variation of f on elements of a uniformly bounded cover. In the same way, one can generalize Property A of G. Yu to arbitrary coarse spaces.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

(A. Vavpetič).

It is well-known (see [3]) that the covering dimension $\dim(X)$ of a paracompact space can be defined as the smallest integer n with the property that any commutative diagram

$$\begin{array}{ccc}
A & \xrightarrow{g} K^{(n)} \\
\downarrow & & \downarrow \\
\downarrow & & \downarrow \\
X & \xrightarrow{f} K
\end{array}$$

[†] This research was supported by the Slovenian Research Agency grants P1-0292, J1-7025, J1-8131.

^{*} Corresponding author.

E-mail addresses: matija.cencelj@guest.arnes.si (M. Cencelj), jdydak@utk.edu (J. Dydak), ales.vavpetic@fmf.uni-lj.si

has a filler h

Here A is any closed subset of X, K is any simplicial complex with the metric topology, $K^{(n)}$ is the n-skeleton of K, and $i: A \to X$, $i: K^{(n)} \to K$ are inclusions. By saying h is a **filler** we mean h|A=g and, since we cannot insist on $i \circ h = f$, we require $h(x) \in \Delta$ whenever $f(x) \in \Delta$ for any simplex Δ of K.

In [1], a generalization of the above result was announced for the coarse category of metric spaces. However, Kevin Zhang, a Ph.D. student in Fudan University of China, found a gap in that paper. Therefore, the goal of the present paper is not only to provide a proof but to generalize the result even further, namely to the category of arbitrary coarse spaces. This is done by demonstrating existence of useful partitions of unity for point-finite covers of coarse spaces (see Section 3).

In our work we will not use the original description of the coarse category of J. Roe [6]. Instead, we will rely on the alternative description provided in [4] that is more useful in the context of asymptotic dimension.

The first issue is to find the analog of continuous maps $f: X \to K$ from X to a simplicial complex K.

As seen in [3] the optimal way to define paracompact spaces X is as follows: for each open cover \mathcal{U} of X there is a simplicial complex K and a continuous map $f: X \to K$ such that the family $\{f^{-1}(st(v))\}_{v \in K^{(0)}}$ refines \mathcal{U} , where the **star** st(v) of vertex v is the union of interiors of all simplices of K containing v.

In [1] the continuous functions $f: X \to K$ were replaced by (λ, C) -Lipschitz functions and the analog of paracompact spaces in coarse geometry was defined as follows:

Definition 1.1. [1] A metric space X is large scale paracompact (ls-paracompact for short) if for each uniformly bounded cover \mathcal{U} of X and for all $\lambda, C > 0$ there is a (λ, C) -Lipschitz function $f: X \to K$ such that $\mathcal{V} := \{f^{-1}(st(v))\}_{v \in K^{(0)}}$ is uniformly bounded and \mathcal{U} refines \mathcal{V} .

To simplify Definition 1.1 the following concept was introduced:

Definition 1.2. [1] Given $\delta > 0$ and a simplicial complex K, a function $f: X \to K$ is called a δ -partition of unity if it is (δ, δ) -Lipschitz, $\mathcal{V} := \{f^{-1}(st(v))\}_{v \in K^{(0)}}$ is uniformly bounded, and the Lebesgue number of \mathcal{V} is at least $\frac{1}{\delta}$.

For arbitrary coarse spaces we need different but related concepts.

Definition 1.3. Given a cover \mathcal{U} of a set X and given a function $f: X \to M$ from X to a metric space M, the \mathcal{U} -variation $var_{\mathcal{U}}(f)$ of f is the supremum of d(f(x), f(y)), where $\{x, y\}$ is contained in a single element of \mathcal{U} .

Definition 1.4. Given a cover \mathcal{U} of a coarse space X, given $\epsilon > 0$, and given a partition of unity $f \colon X \to K$, we say f is a (\mathcal{U}, ϵ) -partition of unity if the following conditions are satisfied:

a. $var_{\mathcal{U}}(f) < \epsilon$,

b. for every $U \in \mathcal{U}$ there is $v \in K^{(0)}$ such that $f(y) \in st(v)$ for all $y \in U$. In other words, point-inverses under f of stars of vertices of K coarsen \mathcal{U} ,

c. point-inverses under f of stars of vertices of K form a uniformly bounded cover of X.

We are grateful to Kevin Zhang for pointing out a gap in the paper [1].

Download English Version:

https://daneshyari.com/en/article/8904103

Download Persian Version:

https://daneshyari.com/article/8904103

<u>Daneshyari.com</u>