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Abstract

We examine conditions under which a semicomputable set in a computable met-
ric space is computable. Topology plays an important role in the description
of such conditions. Motivated by the known result that a semicomputable cell
is computable if its boundary sphere is computable, we investigate semicom-
putable Warsaw discs and their boundary Warsaw circles. We prove that a
semicomputable Warsaw disc is computable if its boundary Warsaw circle is
semicomputable.

Keywords: computable metric space, computable set, semicomputable set,
Warsaw circle, Warsaw disc
2010 MSC: 03F60, 54H99

1. Introduction

A point z € R™ is computable if it can be effectively approximated by a
rational point ¢ € Q™ with arbitrary precision. A nonempty compact subset
S of R™ is computable if it can be effectively approximated by a finite subset
A of Q™, in the sense of the Hausdorff metric, with arbitrary precision. Each
computable set contains computable points, moreover they are dense in it.

On the other hand, a nonempty compact subset S of R" is called semicom-
putable if we can effectively enumerate all rational open sets (i.e. finite unions
of open balls whose centers are rational points and radii are rational numbers)
which cover S. This is equivalent to saying that S = f~1({0}) for some com-
putable function f : R™ — R. Each computable set is semicomputable, but a
semicomputable set need not be computable. In fact, there exists a computable
function f : R — R which has zero-points and they are all contained in [0, 1],
but none of them is computable, meaning that f~!({0}) is a semicomputable
set which contains no computable point, hence which is “far away from being
computable”.

Nevertheless, under certain conditions a semicomputable set is computable.
Some topological properties can force a semicomputable set to be computable
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