Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Degree of homogeneity on suspensions of manifolds

Shijie Gu

Department of Mathematical Sciences, University of Wisconsin, Milwaukee, WI, 53211, United States

ARTICLE INFO

Article history: Received 4 August 2016 Received in revised form 31 January 2018 Accepted 1 February 2018 Available online 5 February 2018

MSC: primary 57N12, 57N13, 57N15, 57N80 secondary 57P05, 57P99

Keywords: Homogeneity Homology manifold Locally cone-like space Stratified space Suspension $\frac{1}{2}$ -homogeneous

1. Introduction

An orbit of a space X is the group action of $\mathscr{H}(X)$ at a point $x \in X$, where $\mathscr{H}(X)$ is the group of homeomorphisms of X onto itself. A space X is said to be homogeneous or 1-homogeneous if for any two points $x, y \in X$, there is a homeomorphism of X onto itself taking x to y. Given a positive integer n, a space is said to be $\frac{1}{n}$ -homogeneous provided that X has exactly n orbits. There have been increasing studies on this topic, especially, the $\frac{1}{2}$ -homogeneity. Interested readers might find extensive discussions regarding continua, ANR-spaces, hyperspaces, cones and suspensions in [1–7].

This paper concerns a question posed by M. de J. López et al. [1, Question 4.6.14]: For which *n*-manifold M^n it is true that the suspension ΣM^n is $\frac{1}{2}$ -homogeneous? The following are the main results of this paper.

Theorem 1.1. Let M^n be a closed connected n-dimensional manifold. The suspension ΣM^n of M^n is 1-homogeneous if and only if M^n is homeomorphic to a topological sphere S^n .

 $\label{eq:https://doi.org/10.1016/j.topol.2018.02.002} 0166-8641/©$ 2018 Elsevier B.V. All rights reserved.

ABSTRACT

Let M^n be a closed connected finite dimensional manifold. The suspension ΣM^n of M^n is homeogeneous if and only if M^n is homeomorphic to a topological sphere S^n . Furthermore, ΣM^n is $\frac{1}{2}$ -homogeneous if and only if M^n is not homeomorphic to S^n . © 2018 Elsevier B.V. All rights reserved.

E-mail address: shijiegu@uwm.edu.

Corollary 1.2. Let M^n be a closed connected n-dimensional manifold. The suspension ΣM^n of M^n is $\frac{1}{2}$ -homogeneous if and only if M^n is not homeomorphic to S^n .

Succinctly speaking, the above results are obtained by combining the work on a particular stratified space from [11] with the generalized Poincaré conjecture.

2. Definitions and notations

Definition 2.1. A metrizable space X is said to be an n-dimensional locally cone-like space $(n \ge 2)$ if each point $x \in X$ has a neighborhood U_x such that U_x is homeomorphic to an open cone $C(S_x)$ over a connected and compact (n-1)-dimensional locally cone-like space S_x with x denotes the vertex of the cone $C(S_x)$. We assume the empty set to be the unique (-1)-dimensional locally cone-like space. A singleton is a 0-dimensional locally cone-like space. A closed interval and circle S^1 are 1-dimensional locally cone-like spaces.

Every locally cone-like space X of dimension n has a natural topological stratification $X_0 \subset X_1 \subset \cdots \subset X_n = X$ such that $X_i - X_{i-1}$ is an *i*-dimensional topological manifold. We refer readers to [10] for more details about stratified spaces.

Remark 2.1. By the fibration theories [8,9], Alexandrov spaces are locally cone-like spaces. Equivalently, such spaces are also called spaces with multiple conic singularities (MCS).

Definition 2.2. A locally compact separable metric space X is called a *homology n-manifold* if for each $x \in X$,

$$H_*(X, X - x) \cong H_*(\mathbb{R}^n, \mathbb{R}^n - {\text{origin}}),$$

where $H_*(\cdot, \cdot)$ denotes singular relative homology with integer coefficients.

The symbol S(X) is used to denote the singular set or nonmanifold set of a homology manifold X; for the dimension of S(X) we use dim S(X).

Definition 2.3. A homology sphere is an n-manifold X having the homology groups of an n-sphere.

3. Proof of Theorem 1.1

The following two propositions discovered in [11] present important information about locally cone-like homology manifolds.

Proposition 3.1. ([11, Prop. 2.2]) Let X be a locally cone-like space of dimension 3. If X is a homology manifold, then it is a topological manifold.

Proposition 3.2. ([11, Prop. 2.3]) Let X be a locally cone-like space of dimension $4 \le n < \infty$. If X is a homology manifold, then dim $S(X) \le 1$.

Combining the preceding propositions, we have

Lemma 3.1. Suppose X is a finite dimensional locally cone-like space. If X is a connected and homogeneous homology manifold, then X is a topological manifold.

Download English Version:

https://daneshyari.com/en/article/8904114

Download Persian Version:

https://daneshyari.com/article/8904114

Daneshyari.com