Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

On metric spaces where continuous real valued functions are uniformly continuous and related notions

Kyriakos Keremedis

Department of Mathematics, University of the Aegean, Karlovassi, Samos 83200, Greece

ARTICLE INFO	A B S T R A C T
Article history: Received 21 June 2017 Received in revised form 6 February 2018 Accepted 6 February 2018 Available online 9 February 2018	 Given a metric space X = (X, d) we show in ZF that: (a) The following are equivalent: (i) For every two closed and disjoint subsets A, B of X, d(A, B) > 0. (ii) Every countable open cover of X has a Lebesgue number. (iii) Every real valued continuous function on X is uniformly continuous. (iv) For every countable (resp. finite, binary) open cover U of X, there exists a δ > 0 such that for all x, y ∈ X with d(x, y) < δ, {x, y} ⊆ U for some U ∈ U. (b) If X is connected then: X is countably compact iff every open cover of X has a Lebesgue number iff for every two closed and disjoint subsets A, B of X, d(A, B) > 0. © 2018 Elsevier B.V. All rights reserved.
MSC: E325 54E35 54E45	
Keywords: Axiom of Choice UC Lebesgue and normal metric spaces	

1. Notation and terminology

Let $\mathbf{X} = (X, d)$ be a metric space, $x \in X$ and $\varepsilon > 0$. $B(x, \varepsilon) = \{y \in X : d(x, y) < \varepsilon\}$ denotes the open ball in \mathbf{X} with center x and radius ε . Given $B \subseteq X$, $\delta(B) = \sup\{d(x, y) : x, y \in B\} \in \mathbb{R}_+ \cup \{+\infty\}$ will denote the *diameter* of B.

Let \mathcal{U} be an open cover of \mathbf{X} . \mathcal{U} is said to be *binary* iff it contains two elements. We say that \mathcal{U} has a *Lebesgue number* $\delta > 0$ iff for every $A \subseteq X$ with $\delta(A) < \delta$ there exists $U \in \mathcal{U}$ with $A \subseteq U$. An open refinement of \mathcal{U} is a new collection of open sets such that each set in the new collection is contained in some member of \mathcal{U} . \mathcal{U} is said to be *locally finite* if each point of X has a neighborhood intersecting a finite number of elements of \mathcal{U} .

X is said to be *Lebesgue* (resp. *countably Lebesgue*) iff every open cover \mathcal{U} (resp. countable open cover) of **X** has a Lebesgue number.

Topology

E-mail address: kker@aegean.gr.

 \mathbf{X} is said to be *normal* iff the distance of every two disjoint, non-empty closed subsets of \mathbf{X} is strictly positive.

X is said to be *totally bounded* iff for every $\varepsilon > 0$, **X** can be covered by finitely many open balls of radius ε .

A family \mathcal{G} of closed subsets of **X** is called *uniformly discrete* iff there is $\delta > 0$ such that for every

 $F, G \in \mathcal{G}, F \neq G, d(F,G) > \delta.$

Below we list the two weak forms of the axiom of choice we shall use in this paper.

- CAC (Form 8 in [4]), Countable Axiom of Choice: For every countable family \mathcal{A} of non-empty sets there exists a function f such that for all $x \in \mathcal{A}$, $f(x) \in x$.
- **PKW**($\aleph_0, \geq 2, \infty$) (Form 167 in [4]), Partial Kinna–Wagner Principle: Every disjoint family $\mathcal{A} = \{A_i : i \in \omega\}$ such that for all $i \in \omega, |A_i| \geq 2$ has a partial Kinna–Wagner choice, i.e., there exists an infinite subfamily $\mathcal{B} = \{A_{k_i} : i \in \omega\}$ of \mathcal{A} and a family $\mathcal{F} = \{F_i : i \in \omega\}$ of non-empty sets such that for all $i \in \omega, F_i \subsetneq A_{k_i}$.

2. Introduction

In this paper we continue with the study of the notions of countably Lebesgue, UC and normal metric spaces initiated in [7]. The intended context for reasoning will be **ZF** unless otherwise noted. In order to stress the fact that a result is proved in **ZF** (resp. **ZF** + **CAC**) we shall write in the beginning of the statements of the theorems (**ZF**) (resp. (**ZF**+**CAC**)).

The UC spaces were introduced by Atsuji in [1]. In [6], [3], [2] they are called Atsuji spaces. A great deal of information regarding these spaces can be found in the expository paper [6] by S. Kundu, T. Jain.

A. Monteiro and M. Peixoto in [10] proved the following theorem.

Theorem 1. [10] (**ZF**) Let $\mathbf{X} = (X, d)$ be a metric space. The following are equivalent: (L): Every binary open cover of \mathbf{X} has a Lebesgue number; (F): The distance of every two disjoint, non-empty closed subsets of \mathbf{X} is strictly positive; (L'): Every finite open cover of \mathbf{X} has a Lebesgue number.

The same authors have also proved, in $(\mathbf{ZF}+\mathbf{CAC})$, in that a metric space is UC iff it is Lebesgue (in [10], Lemma 3, p. 108 the authors use \mathbf{CAC} to fix a sequence $(x_n)_{n\in\mathbb{N}}$ of points of the metric space \mathbf{E} such that for all $n \in \mathbb{N}$, $B(x_n, 1/n)$ is included in no member of the open cover C). Subsequently, S. Mrówka in [11] called a metric space satisfying property (L) of Theorem 1 normal, and proved in $(\mathbf{ZF}+\mathbf{CAC})$, that a metric space is UC iff it is normal. The notion of countably Lebesgue metric space was introduced in [7] and has been established, in $(\mathbf{ZF}+\mathbf{CAC})$ again, that a metric space is Lebesgue iff it is countably Lebesgue. Hence, in $(\mathbf{ZF}+\mathbf{CAC})$,

• Lebesgue \leftrightarrow countably Lebesgue $\leftrightarrow UC \leftrightarrow$ normal.

In (**ZF**) however, the implication "countably Lebesgue \rightarrow Lebesgue" is no more valid, i.e., the negation of the statement: Every countably Lebesgue metric space is Lebesgue is relatively consistent with **ZF**. In [7] it has been shown that "countably Lebesgue \rightarrow Lebesgue" \rightarrow **PKW**($\aleph_0, \geq 2, \infty$). Since there are **ZF** models, see e.g., Cohen's Second Model \mathcal{M} 7 in [4], satisfying the negation of **PKW**($\aleph_0, \geq 2, \infty$), it follows that in \mathcal{M} 7 there exist countably Lebesgue, non-Lebesgue metric spaces.

The following \mathbf{ZF} implications have been established in [7].

Download English Version:

https://daneshyari.com/en/article/8904118

Download Persian Version:

https://daneshyari.com/article/8904118

Daneshyari.com