

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Ample continua in Cartesian products of continua

J.P. Boroński ^{a,b,*}, D.R. Prier ^c, M. Smith ^d

- ^a National Supercomputing Centre IT4Innovations, Division of the University of Ostrava, Institute for Research and Applications of Fuzzy Modeling, 30. Dubna 22, 701 03 Ostrava, Czech Republic
 ^b Faculty of Applied Mathematics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków. Poland
- ^c Mathematics Department, Gannon University, 109 University Square, Erie, PA 16541, USA
- $^{
 m d}$ Department of Mathematics and Statistics, Auburn University, AL 36849, USA

ARTICLE INFO

Article history: Received 25 September 2017 Received in revised form 8 February 2018 Accepted 8 February 2018 Available online 12 February 2018

MSC: primary 54F15, 54B10 secondary 54F50

Keywords:
Solenoid
Knaster continua
Ample subcontinuum

ABSTRACT

We show that the Cartesian product of the arc and a solenoid has the fupcon property, therefore answering a question raised by Illanes. This combined with Illanes' result implies that the product of a Knaster continuum and a solenoid has the fupcon property, therefore answering a question raised by Bellamy and Łysko in the affirmative. Finally, we show that a product of two Smith's nonmetric pseudoarcs has the fupcon property.

 $\ensuremath{{\mathbb O}}$ 2018 Elsevier B.V. All rights reserved.

1. Introduction

The present paper is concerned with the property of having arbitrarily small open neighborhoods for continua in Cartesian products of continua; i.e. given a continuum $M \subseteq X \times Y$ we are interested if

(*) for every open neighborhood U of M there exists an open and connected set V such that $M \subseteq V \subseteq U$.

The property (*) is closely related to the property of being an ample¹ continuum in the product. Recall that M is ample in $X \times Y$ provided that for each open subset $U \subseteq X \times Y$ such that $M \subseteq U$, there exists a subcontinuum L of $X \times Y$ such that $M \subseteq \operatorname{int}_{X \times Y}(L) \subseteq L \subseteq U$. In fact, according to [1], the two

^{*} Corresponding author.

E-mail addresses: jan.boronski@osu.cz (J.P. Boroński), prier001@gannon.edu (D.R. Prier), smith01@auburn.edu (M. Smith).

¹ The notion of an ample continuum was introduced by Prajs and Whittington in [10].

properties are equivalent in the class of Kelley continua. Motivation for the study of ample continua comes from fact that in the hyperspace $C(X \times Y)$ of subcontinua of $X \times Y$ ample continua are the points where $C(X \times Y)$ is locally connected. In this context in [1] Bellamy and Lysko studied the $fupcon^2$ property of Cartesian products. The product of continua $X \times Y$ has the fupcon property if whenever $M \subseteq X \times Y$ is a continuum with full projections onto coordinate spaces (i.e. $\pi_X(M) = X$ and $\pi_Y(M) = Y$) then M has the property (*), and the notion naturally generalizes to Cartesian products of more than two continua. Bellamy and Lysko showed that arbitrary Cartesian products of Knaster continua and arbitrary Cartesian products of pseudo-arcs have the fupcon property. Furthermore, the property (*) for subcontinua of such products is in fact equivalent to the property of having full projections onto all coordinate spaces. The authors also showed that the diagonal in a Cartesian square G of a compact and connected topological group has the property (*) if and only if G is locally connected, and therefore if G is a solenoid then $G \times G$ does not have the fupcon property. Important related results on ample diagonals can be found in the recent work of Prajs [9]. Motivated by the aforementioned results, Bellamy and Lysko raised the following question.

Question 1 (Bellamy & Lysko [1]). Let K be a Knaster continuum and S be a solenoid. Does $K \times S$ have the fupcon property?

A partial step towards a solution to the above problem was achieved by Illanes, who showed the following.

Theorem A (Illanes [7]). Let X be a continuum such that $X \times [0,1]$ has the functor property. Then for each Knaster continuum K, $X \times K$ has the functor property.

Consequently, Question 1 was reduced to the following, potentially simpler problem.

Question 2 (Illanes [7]). Let S be a solenoid. Does $[0,1] \times S$ have the functor property?

We answer this question in the affirmative, and in turn obtain positive answer to Question 1.

Theorem 1.1. Let S be a solenoid. Then $[0,1] \times S$ has the functor property.

Theorem 1.2. Let S be a solenoid and K be a Knaster continuum. Then $K \times S$ has the functor property.

In 1985 M. Smith [11] constructed a nonmetric pseudo-arc \mathcal{M} ; i.e. a Hausdorff chainable, homogeneous, hereditary equivalent and hereditary indecomposable continuum. This continuum has been recently used by the first and third author to provide a new counterexample to Wood's Conjecture in the isometric theory of Banach spaces [2]. Relying on the result of Bellamy and Lysko that products of metric pseudo-arcs have the fupcon property, we shall show that their result holds also for products of \mathcal{M} .

Theorem 1.3. Let \mathcal{M} be Smith's nonmetric pseudo-arc. Any Cartesian power of \mathcal{M} has the functor property.

Earlier, Lewis showed [8] that for any 1-dimensional continuum X there exists a 1-dimensional continuum X_P that admits a continuous decomposition into pseudo-arcs, and whose decomposition space is homeomorphic to X. Recently, Boroński and Smith [3] extended Lewis' result to continuous curves of Smith's nonmetric pseudo-arc. In particular, given any metric 1-dimensional continuum X there exists a continuum X_M that admits a continuous decomposition into nonmetric pseudo-arcs, and whose decomposition space is homeomorphic to X. X_M can be seen as "X of nonmetric pseudoarcs". Here we observe that using the method of proof of Theorem 1.3 one obtains the following generalization.

² The abbreviation fupcon stands for full projections imply connected open neighborhoods. It was introduced by Illanes in [7].

Download English Version:

https://daneshyari.com/en/article/8904119

Download Persian Version:

https://daneshyari.com/article/8904119

<u>Daneshyari.com</u>