

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Commutator subgroups of welded braid groups

Soumya Dey, Krishnendu Gongopadhyay*

Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, P. O. Manauli, Punjab 140306, India

ARTICLE INFO

Article history: Received 13 April 2017 Received in revised form 25 October 2017 Accepted 4 January 2018 Available online 8 January 2018

MSC: primary 20F36 secondary 20F12, 20F05

Keywords:
Welded braids
Flat virtual braids
Flat welded braids
Commutator
Adorability

ABSTRACT

Let WB_n be the welded (or loop) braid group on n strands, $n \geq 3$. We investigate commutator subgroup of WB_n , WB'_n . We prove that WB'_n is finitely generated and Hopfian. We show that WB'_n is perfect if and only if $n \geq 5$. We also compute finite presentation for FWB'_n , the commutator subgroup of the flat welded braid group FWB_n . Along the way, we investigate adorability of these groups.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Welded braid groups are certain extensions of the classical braid groups. These groups have appeared in several contexts in the literature and often with different names, e.g. [4], [5], [7], [9] [10]. They are also known as loop braid groups or permutation braid groups or symmetric automorphisms of free groups. We refer to the recent survey article by Damiani [6] for further details on different definitions and applications of these groups.

In this paper, we investigate the commutator subgroups of the welded braid groups. The commutator B'_n of the classical braid group B_n is well studied. Gorin and Lin [8] obtained a finite presentation of B'_n . Simpler presentation of B'_n was obtained by Savushkina [20]. Several authors have investigated the larger

 $^{^{\}circ}$ The authors acknowledge partial support from the DST projects INT/RUS/RSF/P-2 and DST/INT/JSPS/P-192/2014. Dey was supported by a UGC JRF during the course of this work.

^{*} Corresponding author.

E-mail addresses: soumya.sxccal@gmail.com (S. Dey), krishnendu@iisermohali.ac.in, krishnendug@gmail.com (K. Gongopadhyay).

class of spherical Artin groups, e.g. [22], [16], [17]. In this context, it is a natural question to investigate structures of commutator subgroups of other classes of generalized braid groups.

Let WB_n denote the welded braid group of n strands. We investigate the commutator subgroup of WB_n . Recall that a group G is called *perfect* if it is equal to its commutator subgroup. We prove the following:

Theorem 1.1. Let WB'_n denote the commutator subgroup of the welded braid group WB_n .

- (i) WB'_n is a finitely generated group for all $n \geq 3$. For $n \geq 7$, the rank of WB'_n is at most 1 + 2(n 3), and for $3 \leq n \leq 6$, the rank is at most 4 + 2(n 3).
- (ii) For $n \geq 5$, WB'_n is perfect.

It is known that $WB_2 = F_2 \rtimes S_2$. So, the commutator WB'_2 is infinitely generated.

Recall that a group G is called *Hopfian* if every epimorphism $G \to G$ is an isomorphism. In general, being Hopfian is not a subgroup-closed group property. Using the above theorem, we have the following.

Corollary 1.2. For any $n \geq 3$, WB'_n is Hopfian.

Another consequence of the above theorem is the following.

Corollary 1.3. For a free group F_k , the image of any nontrivial homomorphism $\phi: WB_n \to F_k$ is infinite cyclic.

The Reidemeister–Schreier method is a standard technique to obtain presentations of subgroups; for details see [15]. This method was used to obtain presentations of certain classes of Artin groups in [14], [12], [16]. We shall use this method to compute a presentation for WB'_n . We shall first find out a presentation using Reidemeister–Schreier method, and then using Tietze transformations, will eliminate redundant generators to obtain a finite generating set.

Adorability of welded braid groups. Motivated by the covering theory of aspherical 3-manifolds, Roushon defined the notion of an adorable group: a group G is called adorable if $G^i/G^{i+1} = 1$ for some i, where $G^i = [G^{i-1}, G^{i-1}]$ and $G^0 = G$ are the terms in the derived series of G. The smallest i for which the above property holds, is called the degree of adorability of G. For more details on adorable groups, see [18,19]. Applying Roushon's results with part (ii) of the above theorem, we have the following.

Corollary 1.4. For $n \geq 5$, WB_n is adorable of degree 1, and for n = 3, 4, WB_n is not adorable.

Therefore, by Theorem 1.1 and Corollary 1.4 we immediately have the following.

Corollary 1.5. The group WB'_n is perfect if and only if $n \geq 5$.

This generalizes the fact that B_n is adorable of degree 1 for $n \geq 5$. It is easy to see that if $f: G \to H$ be a surjective homomorphism with G adorable, then H is also adorable and $doa(H) \leq doa(G)$, where doa(G) denotes degree of adorability, see [19, Lemma 1.1]. It follows from [2, Proposition 8] that the commutator subgroup VB'_n of the virtual braid group VB_n is perfect for $n \geq 5$. Thus, for $n \geq 5$, VB_n is adorable of degree 1. The welded braid groups being quotients of these groups, are also adorable with degree ≤ 1 . This gives a proof of the fact that WB'_n is perfect for $n \geq 5$ even without using the presentation of WB'_n . Using the presentation, we give a direct proof of this fact.

After finishing this article, we have come to know about the recent work of Zaremsky [21] that implies the finite presentability of WB'_n for $n \ge 4$, see [21, Theorem B]. The finite generation of this group for $n \ge 3$ is

Download English Version:

https://daneshyari.com/en/article/8904127

Download Persian Version:

https://daneshyari.com/article/8904127

<u>Daneshyari.com</u>