Contents lists available at ScienceDirect # Topology and its Applications www.elsevier.com/locate/topol # Commutator subgroups of welded braid groups Soumya Dey, Krishnendu Gongopadhyay* Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, P. O. Manauli, Punjab 140306, India #### ARTICLE INFO Article history: Received 13 April 2017 Received in revised form 25 October 2017 Accepted 4 January 2018 Available online 8 January 2018 MSC: primary 20F36 secondary 20F12, 20F05 Keywords: Welded braids Flat virtual braids Flat welded braids Commutator Adorability #### ABSTRACT Let WB_n be the welded (or loop) braid group on n strands, $n \geq 3$. We investigate commutator subgroup of WB_n , WB'_n . We prove that WB'_n is finitely generated and Hopfian. We show that WB'_n is perfect if and only if $n \geq 5$. We also compute finite presentation for FWB'_n , the commutator subgroup of the flat welded braid group FWB_n . Along the way, we investigate adorability of these groups. © 2018 Elsevier B.V. All rights reserved. ### 1. Introduction Welded braid groups are certain extensions of the classical braid groups. These groups have appeared in several contexts in the literature and often with different names, e.g. [4], [5], [7], [9] [10]. They are also known as loop braid groups or permutation braid groups or symmetric automorphisms of free groups. We refer to the recent survey article by Damiani [6] for further details on different definitions and applications of these groups. In this paper, we investigate the commutator subgroups of the welded braid groups. The commutator B'_n of the classical braid group B_n is well studied. Gorin and Lin [8] obtained a finite presentation of B'_n . Simpler presentation of B'_n was obtained by Savushkina [20]. Several authors have investigated the larger $^{^{\}circ}$ The authors acknowledge partial support from the DST projects INT/RUS/RSF/P-2 and DST/INT/JSPS/P-192/2014. Dey was supported by a UGC JRF during the course of this work. ^{*} Corresponding author. E-mail addresses: soumya.sxccal@gmail.com (S. Dey), krishnendu@iisermohali.ac.in, krishnendug@gmail.com (K. Gongopadhyay). class of spherical Artin groups, e.g. [22], [16], [17]. In this context, it is a natural question to investigate structures of commutator subgroups of other classes of generalized braid groups. Let WB_n denote the welded braid group of n strands. We investigate the commutator subgroup of WB_n . Recall that a group G is called *perfect* if it is equal to its commutator subgroup. We prove the following: **Theorem 1.1.** Let WB'_n denote the commutator subgroup of the welded braid group WB_n . - (i) WB'_n is a finitely generated group for all $n \geq 3$. For $n \geq 7$, the rank of WB'_n is at most 1 + 2(n 3), and for $3 \leq n \leq 6$, the rank is at most 4 + 2(n 3). - (ii) For $n \geq 5$, WB'_n is perfect. It is known that $WB_2 = F_2 \rtimes S_2$. So, the commutator WB'_2 is infinitely generated. Recall that a group G is called *Hopfian* if every epimorphism $G \to G$ is an isomorphism. In general, being Hopfian is not a subgroup-closed group property. Using the above theorem, we have the following. Corollary 1.2. For any $n \geq 3$, WB'_n is Hopfian. Another consequence of the above theorem is the following. **Corollary 1.3.** For a free group F_k , the image of any nontrivial homomorphism $\phi: WB_n \to F_k$ is infinite cyclic. The Reidemeister–Schreier method is a standard technique to obtain presentations of subgroups; for details see [15]. This method was used to obtain presentations of certain classes of Artin groups in [14], [12], [16]. We shall use this method to compute a presentation for WB'_n . We shall first find out a presentation using Reidemeister–Schreier method, and then using Tietze transformations, will eliminate redundant generators to obtain a finite generating set. Adorability of welded braid groups. Motivated by the covering theory of aspherical 3-manifolds, Roushon defined the notion of an adorable group: a group G is called adorable if $G^i/G^{i+1} = 1$ for some i, where $G^i = [G^{i-1}, G^{i-1}]$ and $G^0 = G$ are the terms in the derived series of G. The smallest i for which the above property holds, is called the degree of adorability of G. For more details on adorable groups, see [18,19]. Applying Roushon's results with part (ii) of the above theorem, we have the following. **Corollary 1.4.** For $n \geq 5$, WB_n is adorable of degree 1, and for n = 3, 4, WB_n is not adorable. Therefore, by Theorem 1.1 and Corollary 1.4 we immediately have the following. **Corollary 1.5.** The group WB'_n is perfect if and only if $n \geq 5$. This generalizes the fact that B_n is adorable of degree 1 for $n \geq 5$. It is easy to see that if $f: G \to H$ be a surjective homomorphism with G adorable, then H is also adorable and $doa(H) \leq doa(G)$, where doa(G) denotes degree of adorability, see [19, Lemma 1.1]. It follows from [2, Proposition 8] that the commutator subgroup VB'_n of the virtual braid group VB_n is perfect for $n \geq 5$. Thus, for $n \geq 5$, VB_n is adorable of degree 1. The welded braid groups being quotients of these groups, are also adorable with degree ≤ 1 . This gives a proof of the fact that WB'_n is perfect for $n \geq 5$ even without using the presentation of WB'_n . Using the presentation, we give a direct proof of this fact. After finishing this article, we have come to know about the recent work of Zaremsky [21] that implies the finite presentability of WB'_n for $n \ge 4$, see [21, Theorem B]. The finite generation of this group for $n \ge 3$ is ## Download English Version: # https://daneshyari.com/en/article/8904127 Download Persian Version: https://daneshyari.com/article/8904127 <u>Daneshyari.com</u>