Berge duals and universally tight contact structures

Christopher R. Cornwell
Towson University, Towson, MD, USA

A R T I C L E I N F O

Article history:

Received 27 June 2017
Received in revised form 29
December 2017
Accepted 1 January 2018
Available online 4 January 2018

Keywords:

Low-dimensional topology
Knot theory
Contact geometry
Dehn surgery
Open book decompositions
Lens spaces

Abstract

Dehn surgery on a knot determines a dual knot in the surgered manifold, the core of the filling torus. We consider duals of knots in S^{3} that have a lens space surgery. Each dual supports a contact structure. We show that if a universally tight contact structure is supported, then the dual is in the same homology class as the dual of a torus knot.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Let p, q be coprime with $0 \leq q<p$. Considering S^{3} as the unit sphere of \mathbb{C}^{2}, with coordinates $\left(z_{1}, z_{2}\right)$, define the lens space $L(p, q)$ as the quotient of S^{3} under the $(\mathbb{Z} / p \mathbb{Z})$-action $\left(z_{1}, z_{2}\right) \sim\left(\omega z_{1}, \omega^{q} z_{2}\right)$ where $\omega=\exp (2 \pi \sqrt{-1} / p)$. Write $\pi: S^{3} \rightarrow L(p, q)$ for the associated covering map.

If there is an integer surgery on a knot $K \subset S^{3}$ that produces a lens space $L(p, q)$ then we call K a lens space knot. ${ }^{1}$ Passing to the mirror of K if needed, we consider only positive surgeries. A method of constructing lens space knots was introduced in [4]. Let Σ be a standard genus 2 surface splitting $S^{3}=H_{1} \cup_{\Sigma} H_{2}$ as two handlebodies. Any simple closed curve in Σ that is primitive in each free group $\pi_{1}\left(H_{i}\right)$, $i=1,2$ (under the inclusion $\Sigma \subset H_{i}$), has a lens space surgery with framing given by Σ. Knots represented by such a simple closed curve are called doubly primitive. The Berge Conjecture [20, Problem 1.78] is that every lens space knot is doubly primitive.

[^0]Berge catalogued ten families of doubly primitive knots which we refer to as Types I through X. ${ }^{2}$ Following convention we call the knots in Types I through X the Berge knots, though it is now known that every doubly primitive knot is one of the Berge knots [14].

Recall that Dehn surgery on $K \subset S^{3}$ picks out a knot in the surgered manifold, the surgery dual, defined as the core of the surgery solid torus. As elsewhere in the literature, if $K \subset S^{3}$ is a Berge knot and $K^{\prime} \subset L(p, q)$ its surgery dual, we also call $K^{\prime} \subset L(p, q)$ a Berge knot. A number of investigations take this dual perspective (e.g. [8], [14], [16], [27]).

By the work of numerous authors, a dual in $L(p, q)$ to a lens space knot in S^{3} is rationally fibered and supports a tight contact structure on $L(p, q)$ (see Section 2). A universally tight contact structure on $L(p, q)$ is obtained by using π to push forward the standard contact structure on S^{3}. Denote the resulting contact structure on $L(p, q)$ by $\xi_{p, q}$. When $0<q<p-1$ there is another universally tight contact structure, obtained by reversing the coorientation of the contact planes. We consider which duals to a lens space knot support one of these contact structures.

Theorem 1.1. If $K \subset L(p, q)$ is dual to a lens space knot and K supports a universally tight contact structure, then the homology class of K in $H_{1}(L(p, q))$ contains a Berge knot that is dual to a torus knot in S^{3}.

Remark 1.2. Here, and throughout this paper, homology is taken with integer coefficients.

Remark 1.3. We will prove (see Theorem 4.1) that a Berge knot $B \subset L(p, q)$ that supports a universally tight structure is dual to a torus knot. However, our techniques use only the homology class of B and its rational genus (see Section 2). That the homology class of a lens space knot K contains a Berge knot which has the same knot Floer homology as K, and thus genus, was shown in [14] (see also [27, Theorem 2]).

Remark 1.4. Theorem 1.1 implies, for a dual K to a lens space knot, that the natural extension of the transverse invariant λ^{+}of [26] to the setting of lens spaces does not live in the extremal Alexander grading of $\widehat{H F K}(L(p, q), K)$ unless K is homologous to a torus knot dual.

Theorem 1.1 has a consequence for fractional Dehn twist coefficients of open books (see [22]) which are supported by lens space knots.

Corollary 1.5. If $K \subset S^{3}$ is a lens space knot with a surgery dual that is not homologous to the dual of a torus knot, then $c(h)<\frac{2}{2 g(K)-1}$, where $g(K)$ is the Seifert genus, h is the monodromy for K, and $c(h)$ the fractional Dehn twist coefficient.

We should remark that the bound of Corollary 1.5 (in fact, a slightly better one) can be obtained by using [22, Theorem 4.5] in place of Theorem 1.1 in the proof (see Section 4).

In Section 2 we review work of Baker, Etnyre, and Van Horn-Morris, which allows us to approach Theorem 1.1 through the rational Bennequin-Eliashberg inequality. We also review how to compute the self-linking number of transverse knots in $\xi_{p, q}$ and what is known about homology classes of the surgery duals in $H_{1}(L(p, q))$. Section 3 addresses the sharpness of the rational Bennequin-Eliashberg inequality for Berge knots in each of the different types. The proofs of Theorem 1.1 and Corollary 1.5 are given in Section 4.

[^1]
https://daneshyari.com/en/article/8904137

Download Persian Version:

https://daneshyari.com/article/8904137

Daneshyari.com

[^0]: E-mail address: ccornwell@towson.edu.
 1 While this terminology is common, it does sound as though it were describing a knot in a lens space. We will try to minimize the confusion by often referring to the ambient manifold.

[^1]: ${ }^{2}$ In fact, Berge described twelve families, I-XII. As in [27], our description in Types IX and X account for those in XI and XII by allowing the parameter j to be negative.

