

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Every Σ_s -product of K-analytic spaces has the Lindelöf Σ -property $\stackrel{\diamond}{\sim}$

F. Casarrubias-Segura ^a, S. García-Ferreira ^b, R. Rojas-Hernández ^{b,*}

ARTICLE INFO

Article history: Received 4 August 2017 Received in revised form 22 November 2017 Accepted 23 November 2017 Available online 2 December 2017

MSC: 54D20 54B99

54C35 54D30

Keywords: Lindelöf Σ -space σ -product Function space Eberlein compact

ABSTRACT

Given compact spaces X and Y, if X is Eberlein compact and $C_{p,n}(X)$ is homeomorphic to $C_{p,n}(Y)$ for some natural n, then Y is also Eberlein compact; this result answers a question posed by Tkachuk. Assuming existence of a Souslin line, we give an example of a Corson compact space with a Lindelöf subspace that fails to be Lindelöf Σ ; this gives a consistent answer to another question of Tkachuk. We establish that every Σ_s -product of K-analytic spaces is Lindelöf Σ and $C_p(X)$ is a Lindelöf Σ -space for every Lindelöf Σ -space X contained in a Σ_s -product of real lines. We show that $C_p(X)$ is Lindelöf for each Lindelöf Σ -space X contained in a Σ -product of real lines. We prove that $C_p(X)$ has the Collins–Roscoe property for every dyadic compact space X and generalize a result of Tkachenko by showing, with a different method, that the inequality $w(X) \leq nw(X)^{Nag(X)}$ holds for regular spaces.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

It is a well-known fact (which follows from Th. IV.1.7 of [1]) that if X is Eberlein compact, Y is compact and $C_p(X)$ is homeomorphic to $C_p(Y)$, then Y is also an Eberlein compact space. In this direction, we solve affirmatively a question posed in [21] by showing that if X is Eberlein compact, Y is compact and $C_{p,n}(X)$ is homeomorphic to $C_{p,n}(Y)$, for some $n \in \mathbb{N}$, then Y is Eberlein compact. A question from [26] is solved consistently in the negative way by providing an example of a Lindelöf subspace of a Corson compact space which does not have the Lindelöf Σ -property.

E-mail addresses: fcasarrubiass@ciencias.unam.mx (F. Casarrubias-Segura), sgarcia@matmor.unam.mx (S. García-Ferreira), satzchen@yahoo.com.mx (R. Rojas-Hernández).

^a Departamento de Matematicas, Facultad de Ciencias, UNAM, Circuito exterior s/n, Ciudad Universitaria, C.P. 04510, Ciudad de México, México

b Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México, Campus Morelia, Apartado Postal 61-3, Santa María, 58089, Morelia, Michoacán, México

^{*} Research of the second-named author was supported by CONACYT grant no. 176202 and PAPIIT grant no. IN-105614.

^{*} Corresponding author.

Following Tkachuk, we call a space X Gul'ko if $C_p(X)$ has the Lindelöf Σ -property. The Σ_s -products introduced in [17] are relevant in the study of Gul'ko spaces, since Sokolov proved that a compact space X is a Gul'ko compact space iff X embeds into a Σ_s -product of real lines. Tkachuk proved in [24] that every Σ_s -product of compact spaces is Lindelöf Σ . In this context, we show that if every σ -product of a family of topological spaces is Lindelöf Σ , then every Σ_s -product of this family is Lindelöf Σ . By applying this result, we conclude that every Σ_s -product of K-analytic spaces is Lindelöf Σ . On the other hand, we extend the above result of Sokolov by showing that every Lindelöf Σ -space contained in a Σ_s -product of real lines is a Gul'ko space. In a parallel direction, we establish that $C_p(X)$ is Lindelöf for each Lindelöf Σ -space contained in a Σ -product of real lines.

Collins–Roscoe spaces where introduced in [3], together with other similar properties, to study conditions for the metrizability of topological spaces. Some of the results mentioned above in combination with some results from [23] imply that both spaces $\Sigma_s \mathbb{R}^T$ and $C_p(\Sigma_s \mathbb{R}^T)$ have the Collins–Roscoe property. The first result was already established in [24], but the second one is new. Also, we show that $C_p(X)$ has the Collins–Roscoe property for certain dense subspaces X of products of cosmic spaces. As a consequence we show that $C_p(X)$ has the Collins–Roscoe property for every dyadic compact space X.

In [18], Tkachenko proved that if a regular Lindelöf Σ -space Y is homeomorphic to a subspace of a separable Hausdorff space, then $w(Y) \leq \mathfrak{c}$. To prove this result Tkachenko established the inequality $w(X) \leq nw(X)^{Nag(X)}$ for every Tychonoff space X. The proof of this inequality heavily relies on the use of methods of C_p -theory. In the last part of this paper, we provide a direct proof of the relation $w(X) \leq nw(X)^{Nag(X)}$ for every regular space X.

2. Terminology and notation

If not specified otherwise, all spaces in this article are assumed to be Tychonoff (that is, completely regular and Hausdorff). The space \mathbb{R} is the real line with the usual order topology and I = [0, 1] with the topology of subspace; the set $\omega \setminus \{0\}$ is denoted by \mathbb{N} and 2 is the doubleton $\{0, 1\}$ with the discrete topology.

Given a set A in a space X, say that a family \mathcal{N} of subsets of X is an external network of A in X if for any $x \in A$ and any open subset U of X with $x \in U$ there exists $N \in \mathcal{N}$ such that $x \in N \subset U$. If X is a space and $f: X \to Y$ is a continuous map, then a family \mathcal{N} of subsets of X is a network for f if for any $x \in X$ and any open subset U of Y such that $f(x) \in U$, there exists $N \in \mathcal{N}$ such that $x \in X$ and $f(N) \subset U$. A family \mathcal{N} of subsets of a space X is a network with respect to a cover \mathcal{C} of X, if for every $C \in \mathcal{C}$ and every open subset U of X with $C \subset U$ there exists $X \in \mathcal{N}$ such that $X \in X$ and every open subset $X \in X$ such that $X \in X$ such that

The Nagami number of a space X, denoted by Nag(X), is the minimal cardinal κ for which there exist a compact cover K of the space X and family $\mathcal N$ of subsets of X of cardinality κ which is a network for the cover K. If $\mathcal N$ is a network with respect to the cover $\mathcal C = \{\{x\} : x \in X\}$, then we say that $\mathcal N$ is a network of X. A space with a countable network is called cosmic. The network weight of X is the cardinal invariant $nw(X) = \min\{|\mathcal N| : \mathcal N \text{ is a network of } X\}$.

For any space X we denote by $C_p(X)$ the set of all real-valued continuous functions on X endowed with the topology of pointwise convergence.

Given a fixed point a in $X = \prod_{t \in T} X_t$, for $x \in X$, define the $support\ supp(x)$ of x as the set $\{t \in T : x(t) \neq a(t)\}$. The subspace $\Sigma(X, a) = \{x \in X : |supp(x)| \leq \omega\}$ of X is called the Σ -product of the family $\{X_t\}_{t \in T}$ centered at the point a. Analogously, the subspace $\sigma(X, a) = \{x \in X : |supp(x)| < \omega\}$ of X is called the σ -product of the family $\{X_t\}_{t \in T}$ centered at the point a. Lastly, given $n \in \omega$, we will consider the set $\sigma_n(X, a) = \{x \in X : |supp(x)| \leq n\}$.

A space X is called *simple* if it has at most one non-isolated point.

A map $f: X \to Y$ is called a condensation if it is a continuous bijection; in this case we say that X condenses onto Y. If X condenses onto a subspace of Y, we say that X condenses into Y.

All topological notions whose definitions are not stated explicitly here should be understood as in [5].

Download English Version:

https://daneshyari.com/en/article/8904203

Download Persian Version:

https://daneshyari.com/article/8904203

<u>Daneshyari.com</u>