

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Virtual Special Issue – Real and Complex Singularities and their applications in Geometry and Topology

Non reduced plane curve singularities with $b_1(F) = 0$ and Bobadilla's question

Dirk Siersma

Institute of Mathematics, Utrecht University, PO Box 80010, 3508 TA, Utrecht, The Netherlands

ARTICLE INFO

Article history:
Received 24 January 2017
Received in revised form 24 May 2017
Accepted 17 July 2017
Available online 24 November 2017

MSC: 14H20 32S05 32S15

Keywords:
Milnor fibre
Equisingular
1-Dimensional critical locus
Bobadilla's conjecture

ABSTRACT

If the first Betti number of the Milnor fibre of a plane curve singularity is zero, then the defining function is equivalent to x^r .

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Let $f: \mathbb{C}^n \to \mathbb{C}$ be a holomorphic function germ. What can be said about functions whose Milnor fibre F has the property $b_i(F) = 0$ for all $i \geq 1$? If F is connected then f is non-singular and equivalent to a linear function by A'Campo's trace formula. The remaining question: What happens if F is non-connected? is only relevant for non-reduced plane curve singularities.

This question is related to a recent paper [3]. That paper contains a statement about the so-called Bobadilla conjectures [2] in case of plane curves. The invariant $\beta = 0$, used by Massey [4] should imply that the singular set of f is a smooth line.

In this note we give a short topological proof of a stronger statement.

E-mail address: D.Siersma@uu.nl.

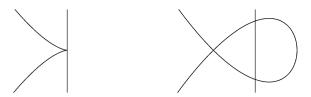


Fig. 1. Deformation to maximal number of double points.

Proposition 1.1. If the first Betti number of the Milnor fibre of a plane curve singularity is zero, then the defining function is equivalent to x^r .

Corollary 1.2. In the above case the singular set is a smooth line and the system of transversal singularities is trivial.

2. Non-reduced plane curves

Non-isolated plane curve singularities have been thoroughly studied by Rob Schrauwen in his dissertation [5]. Main parts of it are published as [6] and [7]. The above Proposition 1.1 is an easy consequence of his work.

We can assume that $f = f_1^{m_1} \cdots f_r^{m_r}$ (partition in powers of reduced irreducible components).

Lemma 2.1. Let $d = \gcd(m_1, \cdots, m_r)$

- (a.) F has d components, each diffeomorphic to the Milnor fibre G of $g = g_1^{\frac{m_1}{d}} \cdots g_r^{\frac{m_r}{d}}$. The Milnor monodromy of f permutes these components,
- (b.) if d = 1 then F is connected.

Proof. (a.) Since $f = g^d$ the fibre F consists of d copies of G.

(b.) We recall here the reasoning from [5]. Deform the reduced factors f_i into \hat{f}_i such that the product $\hat{f}_1 \cdots \hat{f}_r = 0$ contains the maximal number of double points (cf. Fig. 1). This is called a network deformation by Schrauwen. The corresponding deformation \hat{f} of f near such a point has local equation are of the form $x^p y^q = 0$ (point of type D[p,q]).

Near every branch $\hat{f}_i = 0$ the Milnor fibre is a m_i -sheeted covering of the zero-locus, except in the D[p,q]-points. We construct the Milnor fibre F of f starting with $S = \sum m_i$ copies of the affine line \mathbb{A} . Cover the ith branch with m_i copies of \mathbb{A} and delete (p+q) small discs around the D[p,q]-points. Glue in the holes $\gcd(p,q)$ small annuli (the Milnor fibres of D[p,q]). The resulting space is the Milnor fibre F of f.

A hyperplane section of a generic at a generic point of $\hat{f}_i = 0$ defines a transversal Milnor fibre $F_1^{\uparrow\uparrow}$. Start now the construction of F from $F_1^{\uparrow\uparrow}$, which consists of m_1 cyclic ordered points. As soon as $f_1 = 0$ intersects $f_k = 0$ it connects the sheets of $f_1 = 0$ modulo m_k . Since $\gcd(m_1, \dots, m_r) = 1$ we connect all sheets. \Box

Proof of Proposition 1.1. If $b_1(F) = 0$, then also $b_1(G) = 0$. The Milnor monodromy has trace $(T_g) = 1$. According to A'Campo's observation [1] g is regular: g = x. It follows that $f = x^r$. \square

3. Relation to Bobadilla's question

We consider first in any dimension $f: \mathbb{C}^{n+1} \to \mathbb{C}$ with a 1-dimensional singular set, see especially the 1991-paper [8] for definitions, notations and statements.

Download English Version:

https://daneshyari.com/en/article/8904212

Download Persian Version:

https://daneshyari.com/article/8904212

Daneshyari.com