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For an isolated hypersurface singularity which is neither simple nor simple elliptic, 
it is shown that there exists a distinguished basis of vanishing cycles which contains 
two basis elements with an arbitrary intersection number. This implies that the set 
of Coxeter–Dynkin diagrams of such a singularity is infinite, whereas it is finite for 
the simple and simple elliptic singularities. For the simple elliptic singularities, it is 
shown that the set of distinguished bases of vanishing cycles is also infinite. We also 
show that some of the hyperbolic unimodal singularities have Coxeter–Dynkin dia-
grams like the exceptional unimodal singularities.

© 2017 Elsevier B.V. All rights reserved.

0. Introduction

Let f : (Cn, 0) → (C, 0) be the germ of an analytic function with an isolated singularity at the origin 
defining a singularity (X0, 0) where X0 = f−1(0). We assume n ≡ 3 (mod 4). (This can be achieved by a 
stabilization of the singularity.) An important invariant of the singularity (X0, 0) is the symmetric bilinear 
intersection form 〈·, ·〉 on the Milnor lattice of f . It is well known that this intersection form is negative 
definite if and only if the singularity is simple, it is negative semidefinite if and only if the singularity is simple 
elliptic and it is indefinite otherwise. It follows from the Cauchy–Schwarz inequality that for negative definite 
symmetric bilinear forms, the only values of 〈x, y〉 for non-collinear vectors x, y with 〈x, x〉 = 〈y, y〉 = −2 are 
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0, ±1. For semidefinite symmetric bilinear forms, also the values ±2 can be achieved. Another invariant of 
the singularity is the class of distinguished bases of vanishing cycles B∗ of the singularity [6]. The intersection 
matrix with respect to a distinguished basis of vanishing cycles is encoded by a graph, a Coxeter–Dynkin 
diagram of the singularity. In this way, the class B∗ gives rise to the class D∗ of Coxeter–Dynkin diagrams 
with respect to distinguished bases of vanishing cycles. Here we consider questions related to the finiteness 
of these sets. N. A’Campo [1] has shown that if f has corank 2, then there exists a distinguished basis of 
vanishing cycles for f such that the mutual intersection numbers are only 0 or ±1. Here we are interested 
in the opposite question: For which singularities do there exist distinguished bases of vanishing cycles such 
that there are pairs of basis elements with an arbitrary intersection number? We show that such bases exist 
for all isolated hypersurface singularities which are neither simple nor simple elliptic. This implies that for 
these singularities the sets B∗ and D∗ are infinite. For the simple singularities, both sets are finite. We 
show that for the simple elliptic singularities the set D∗ is finite, but not the set B∗. In this way, we obtain 
a characterisation of simple and simple elliptic singularities. For the proof, we show among other things 
that the hyperbolic singularities T3,3,4, T2,4,5, and T2,3,7 have Coxeter–Dynkin diagrams like the exceptional 
unimodal singularities.

1. Distinguished bases of vanishing cycles

We briefly recall the definition of distinguished bases of vanishing cycles.
Let fλ : U → C be a morsification of f . This is a perturbation of (a representative of) f (i.e., f0 = f) 

defined in a suitable neighbourhood U of the origin in Cn, depending on a parameter λ ∈ C and such 
that, for λ �= 0 small enough, the function fλ has only non-degenerate critical points with distinct critical 
values. The number of these critical points is equal to the Milnor number μ of the germ f . Choose a small 
closed disc Δ ⊂ C which contains all the μ critical values of fλ in its interior. Let X := f−1

λ (Δ) ∩ Bε and 
Xt := f−1

λ (t) ∩ Bε for t ∈ Δ where Bε is the ball of radius ε around the origin in Cn. Assume that ε
and λ �= 0 are chosen so small that all the critical points of the function fλ are contained in the interior 
of X and the fibre f−1

λ (t) for t ∈ Δ intersects the ball Bε transversely. Choose a basepoint s ∈ C on the 
boundary of this disc. Join the critical values to the base point s by a system of non-self-intersecting paths 
γ1, . . . , γμ in Δ meeting only at s and numbered in the order in which they arrive at s, where we count 
clockwise from the boundary of the disc (see, e.g., [10, Figure 5.3]). Each path γi gives a vanishing cycle 
δi ∈ Hn−1(Xs; Z) determined up to orientation. It satisfies 〈δi, δi〉 = −2. After choosing orientations we 
obtain a system (δ1, . . . , δμ) of vanishing cycles which is in fact a basis of Hn−1(Xs; Z). Such a basis is 
called a distinguished basis of vanishing cycles. Let B∗ be the set of distinguished bases of the singularity 
(X0, 0). There is an action of the braid group Zμ in μ strings on the set B∗. The standard generator αi, 
i = 1, . . . , μ −1, acts as follows. Let (δ1, . . . , δμ) be a distinguished basis of vanishing cycles and let sδ denote 
the reflection corresponding to δ defined by sδ(x) = x + 〈x, δ〉δ. The action of αi is given by

αi : (δ1, . . . , δμ) 
→ (δ′1, . . . , δ′μ) = (δ1, . . . , δi−1, sδi(δi+1), δi, δi+2, . . . , δμ).

We have 〈δ′k, δ′j〉 = 〈δk, δj〉 for all 1 ≤ k, j ≤ μ, k, j �= i, i + 1, and

〈δ′i, δ′i+1〉 = −〈δi, δi+1〉,
〈δ′k, δ′i+1〉 = 〈δk, δi〉,

〈δ′k, δ′i〉 = 〈δk, δi+1〉 + 〈δi, δi+1〉〈δk, δi〉,

where k �= i, i + 1. The inverse operation α−1
i is also denoted by βi+1 and is given by

βi+1 : (δ1, . . . , δμ) 
→ (δ1, . . . , δi−1, δi+1, sδi+1(δi), δi+2, . . . , δμ).
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