

Contents lists available at ScienceDirect

# Topology and its Applications

www.elsevier.com/locate/topol



# On dense subsets, convergent sequences and projections of Tychonoff products $^{\stackrel{\wedge}{\bowtie}}$



## A.A. Gryzlov

Department of Algebra & Topology, Udmurt State University, Universitetskaya st., 1, Izhevsk, Udmurtiya, 426034, Russia

#### ARTICLE INFO

Article history: Received 6 October 2016 Received in revised form 24 October 2017 Accepted 29 October 2017

Available online 31 October 2017

MSC: 54A25 54B10

Keywords: Tychonoff product Dense set Convergent sequence Independent matrix Projection

#### ABSTRACT

It is well know that the Tychonoff product of  $2^{\omega}$  many separable spaces is separable [2,3].

We consider for the Tychonoff product of  $2^{\omega}$  many separable spaces the problem of the existence of a dense countable subset, which contains no nontrivial convergent in the product sequences.

The first result was proved by W.H. Priestley. He proved [14] that such dense set exists in the Tychonoff product  $\prod_{\alpha \in 2^{\omega}} I_{\alpha}$  of closed unit intervals.

We prove (Theorem 3.2) that such dense set exists in the Tychonoff product  $\prod_{\alpha \in 2^{\omega}} Z_{\alpha}$  of  $2^{\omega}$  many Hausdorff separable not single point spaces.

We prove that in  $\prod_{\alpha \in 2^{\omega}} Z_{\alpha}$  there is a countable dense set  $Q \subseteq \prod_{\alpha \in 2^{\omega}} Z_{\alpha}$  such that for every countable subset  $S \subseteq Q$  a set  $\pi_A(S)$  is dense in a face  $\prod_{\alpha \in A} Z_{\alpha}$  for some A,

We prove (Theorem 3.4) that in  $\prod_{\alpha \in 2^{\omega}} I_{\alpha}$  there is a countable set, that is dense but sequentially closed in  $\prod_{\alpha \in 2^{\omega}} I_{\alpha}$  with the Tychonoff topology and is closed and discrete in  $\prod_{\alpha \in 2^{\omega}} I_{\alpha}$  with the box topology (Theorem 3.4).

 $\ensuremath{{\mathbb O}}$  2017 Elsevier B.V. All rights reserved.

### 1. Introduction

By Hewitt–Marczewski–Pondiczery theorem (see [2,3]), the Tychonoff product  $\prod_{\alpha \in 2^{\omega}} X_{\alpha}$  of  $2^{\omega}$  many separable spaces is separable.

We consider the problem of the existence in the Tychonoff product of  $2^{\omega}$  many separable spaces a dense countable subset, which contains no nontrivial convergent in the product sequences.

In [14] W.H. Priestley proved that such countable dense set exists in  $I^{2^{\omega}}$ , where I is closed unit interval.

<sup>&</sup>lt;sup>♠</sup> Supported by Ministry of Education and Science of the Russian Federation, project number 1.5211.2017/8.9. E-mail address: gryzlov@udsu.ru.

In [15] P. Simon proved that such countable dense set exists in  $D^{2^{\omega}}$ , where D is a two-point discrete space. He proved that in  $D^{2^{\omega}}$  there is a countable dense set such that the closure of every countable subset of it has a cardinality  $2^{2^{\omega}}$ .

In [10] we proved that such countable dense set exists in  $Z^{2^{\omega}}$ , where Z is a countable discrete space. We proved that in  $Z^{2^{\omega}}$  there is a countable dense set such that every countable subset of Q contains a countable discrete in  $Z^{2^{\omega}}$  subset.

Now we in Theorem 3.2 prove that such countable dense set exists in the general case of the product  $\prod Z_{\alpha}$  of not one-point Hausdorff separable spaces.

We prove that in  $\prod_{\alpha \in 2^{\omega}} Z_{\alpha}$  there is a countable dense set  $Q \subseteq \prod_{\alpha \in 2^{\omega}} Z_{\alpha}$  such that for every countable subset  $S \subseteq Q$  a set  $\pi_A(S)$  is dense in a face  $\prod Z_\alpha$  for some  $A, |A| = \omega$ 

We use the notion of the independent matrix (see Preliminaries), it generalizes the independent family of sets [5,11].

Independent families of sets, in particular, were used by R. Engelking and M. Karlowicz ([4]) for their proof of Hewitt-Marczewski-Pondiczery theorem, by P. Simon ([15]) in his theorem, mentioned above.

The notion of independent matrix was defined by J. van Mill [13] as a subfamily of independent linked family, defined by K. Kunen [12].

Families of this type were widely used in the theory of Stone-Chech compactifications of discrete spaces (see in particular [12,13,6,7]).

We used independent matrices in [8–10] for an investigation of dense subsets of products.

#### 2. Preliminaries

Definitions and notions used in the paper can be found in [1–3]. d(X) denotes the density of a space X, by [A] we denote the closure of a set A, exp A denote the set of all subsets of A and by Exp A we denote the set of all non-empty subsets of a set A. By  $Y^X$  we denote the set of all mappings from X to Y. We say that X is a countable set if  $|X| = \omega$ .

By  $\pi_{\alpha}$  we denote an  $\alpha$ -projection of  $\prod_{\alpha \in A} X_{\alpha}$  on  $X_{\alpha}$ . A sequence  $\{x_n\}_{n=1}^{\infty}$  is called trivial if there is  $n_0 \in \omega$  such that  $x_n = x_{n_0}$  for all  $n \geq n_0$ .

A subset  $A \subseteq X$  is called sequentially closed if A contains limits of all its convergent in X sequences.

We will use the notion of the independent matrix of subsets of  $\omega$  (see [13]).

**Definition 2.1.** ([13]) An indexed family  $\{A_{ij}: i \in I, j \in J\}$  of subset of  $\omega$  is called a J by I independent matrix if

- whenever  $j_0, j_1 \in J$  are distinct and  $i \in I$ , then  $|A_{ij_0} \cap A_{ij_1}| < \omega$ ;
- if  $i_1, \ldots, i_n \in I$  are distinct and  $j_1, \ldots, j_n \in J$ , then

$$|\cap \{A_{i_k,i_k}: k=1,\ldots,n\}| = \omega.$$

For  $\{A_{ij}: i \in I, j \in J\}$  the family  $\{A_{ij}^* = [A_{ij}] \setminus \omega : i \in I, j \in J\}$  is a J by I independent matrix of clopen subsets of  $\omega^*$ .

The following construction of the  $2^{\omega}$  by  $2^{\omega}$  independent matrix of subsets of  $\omega$  can be found in [13]. Let

$$H' = \{ \langle k, u \rangle : k \in \omega, u \in (\exp k)^{\exp k} \}$$

# Download English Version:

# https://daneshyari.com/en/article/8904245

Download Persian Version:

https://daneshyari.com/article/8904245

<u>Daneshyari.com</u>