Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/)

Topology and its Applications

www.elsevier.com/locate/topol

Lexicographic products of GO-spaces

Nobuyuki Kemoto

Department of Mathematics, Oita University, Oita, 870-1192 Japan

A R T I C L E I N F O A B S T R A C T

Article history: Received 27 April 2017 Received in revised form 14 October 2017 Accepted 18 October 2017 Available online 24 October 2017

MSC: primary 54F05, 54B10, 54B05 secondary 54C05

Keywords: Lexicographic product GO-space LOTS Paracompact

It is known that lexicographic products of paracompact LOTS's are also paracompact, see [\[2\].](#page--1-0) In this paper, the notion of lexicographic products of GO-spaces is defined. We characterize when a lexicographic product of GO-spaces is a LOTS. Moreover, we show that lexicographic products of paracompact GO-spaces are also paracompact. For example, we see

- the lexicographic products $\mathbb{M} \times \mathbb{P}$ and $\mathbb{S} \times [0,1)_{\mathbb{R}}$ are LOTS's, but $\mathbb{P} \times \mathbb{M}$ and $\mathbb{S} \times (0,1]_{\mathbb{R}}$ are not LOTS's,
- the lexicographic product \mathbb{S}^{γ} of the *γ*-many copies of \mathbb{S} is a LOTS iff γ is a limit ordinal,
- the lexicographic products $M \times P$ and $P \times M$ are paracompact,
- the lexicographic product \mathbb{S}^{γ} is paracompact for every ordinal γ ,

where \mathbb{P} , \mathbb{M} , \mathbb{S} and $[0,1)_{\mathbb{R}}$ denote the irrationals, the Michael line, the Sorgenfrey line and the interval $[0, 1)$ in the reals \mathbb{R} , respectively.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

We assume all topological spaces have cardinality at least 2.

A linearly ordered set $\langle X, \leq_X \rangle$ (see [\[1\]\)](#page--1-0) has a natural T_2 -topology denoted by λ_X or $\lambda(\leq_X)$ so called the *interval topology* which is the topology generated by $\{(-,x)_X : x \in X\} \cup \{(x, \to)x : x \in X\}$ as a subbase, where $(x, \rightarrow)x = \{w \in X : x \leq x w\}$, $(x, y)_X = \{w \in X : x \leq x w \leq x y\}$, ..., etc. Here $w \leq_X x$ means $w < X$ *x* or $w = x$. If the contexts are clear, we simply write \lt and $(x, y]$ instead of \lt_X and $(x, y]_X$ respectively. Note that this subbase induces a base by convex subsets (e.g., the collection of all intersections of at most two members of this subbase), where a subset *B* of *X* is *convex* if for every $x, y \in B$ with $x \leq_X y$, $[x, y]_X \subset B$ holds. The triple $\langle X, \langle X, \lambda_X \rangle$ is called a *LOTS* (= Linearly Ordered Topological Space) and simply denoted by LOTS *X*. Observe that if $x \in U \in \lambda_X$ and $(\leftarrow, x) \neq \emptyset$, then there is $y \in X$ such that

Topology and its
Applications

E-mail address: [nkemoto@cc.oita-u.ac.jp.](mailto:nkemoto@cc.oita-u.ac.jp)

 $y < x$ and $(y, x] \subset U$. Note that for every $x \in X$, $(\leftarrow, x] \notin \lambda_X$ iff (x, \rightarrow) is non-empty and has no minimum (briefly, min), also analogously $[x, \to) \notin \lambda_X$ iff (\leftarrow, x) is non-empty and has no max. Let

$$
X_R = \{x \in X : (\leftarrow, x] \notin \lambda_X\} \text{ and } X_L = \{x \in X : [x, \rightarrow) \notin \lambda_X\}.
$$

Unless otherwise stated, the real line R is considered as a linearly ordered set (hence LOTS) with the usual order, similarly so are the set $\mathbb Q$ of rationals, the set $\mathbb P$ of irrationals and an ordinal α .

A *generalized ordered space* (= GO-space) is a triple $\langle X, \leq_X, \tau_X \rangle$, where \leq_X is linear order on X and *τ^X* is a *T*² topology on *X* which has a base consisting of convex sets, also simply denoted by GO-space *X*. For LOTS's and GO-spaces, see also the nice text book [\[5\].](#page--1-0) It is easy to verify that τ_X is stronger than λ_X . Also let

$$
X_{\tau_X}^+ = \{ x \in X : (\leftarrow, x]_X \in \tau_X \setminus \lambda_X \},
$$

$$
X_{\tau_X}^- = \{ x \in X : [x, \to)_X \in \tau_X \setminus \lambda_X \}.
$$

Obviously $X_{\tau_X}^+ \subset X_R$ and $X_{\tau_X}^- \subset X_L$. When contexts are clear, we usually simply write X^+ and X^- instead of $X_{\tau_X}^+$ and $X_{\tau_X}^-$, respectively. Note that X is a LOTS iff $X^+\cup X^- = \emptyset$. For $A\subset X_R$ and $B\subset X_L$, let $\tau(A, B)$ be the topology generated by $\{(-,x)_X : x \in X\} \cup \{(x, \to)_X : x \in X\} \cup \{(-,x)_X : x \in A\} \cup \{[x, \to)_X : x \in B\}$ as a subbase. Obviously $\tau_X = \tau(X^+, X^-)$ whenever *X* is a GO-space, and also $\tau(A, B)$ defines a GO-space topology on *X* whenever *X* is a LOTS with $A \subset X_R$ and $B \subset X_L$. The Sorgenfrey line S is $\langle \mathbb{R}, \leq_{\mathbb{R}}, \tau(\mathbb{R}, \emptyset) \rangle$ and the Michael line M is $\langle \mathbb{R}, \leq_{\mathbb{R}}, \tau(\mathbb{P}, \mathbb{P})\rangle$. These spaces are GO-spaces but not LOTS's.

Let *X* be a GO-space and $Y \subset X$, then "the subspace *Y* of a GO-space *X*" means the GO-space $\langle Y, \langle x | Y, \lambda_X | Y \rangle$, where $\langle x | Y \rangle$ is the restricted order of $\langle x \rangle$ on Y and $\lambda_X | Y := \{ U \cap Y : U \in \lambda_X \}$, that is, $\lambda_X \restriction Y$ is the subspace topology of λ_X .

Now for a given GO-space *X*, let

$$
X^* = (X^- \times \{-1\}) \cup (X \times \{0\}) \cup (X^+ \times \{1\})
$$

and consider the lexicographic order $\langle X^*,$ on X^* induced by the lexicographic order on $X \times \{-1, 0, 1\}$, here of course $-1 < 0 < 1$. We usually identify *X* as $X = X \times \{0\}$ in the obvious way (i.e., $x = \langle x, 0 \rangle$), thus we may consider $X^* = (X^- \times \{-1\}) \cup X \cup (X^+ \times \{1\})$. Note $(\leftarrow, x]_X = (\leftarrow, \langle x, 1 \rangle)_{X^*} \cap X \in \lambda(\leq_{X^*}) \restriction X$ whenever $x \in X^+$, and also its analogy. Then the GO-space *X* is a dense subspace of the LOTS X^* , and *X* has max iff X^* has max, in this case, max $X = \max X^*$ (and similarly for min). Note $\mathbb{S}^* = \mathbb{R} \times \{0\} \cup \mathbb{R} \times \{1\}$ with the identification $\mathbb{S} = \mathbb{R} \times \{0\}$ and $\mathbb{M}^* = \mathbb{P} \times \{-1\} \cup \mathbb{R} \times \{0\} \cup \mathbb{P} \times \{1\}$ with the identification $\mathbb{M} = \mathbb{R} \times \{0\}$.

Definition 1.1. Let X_α be a LOTS for every $\alpha < \gamma$ and $X = \prod_{\alpha < \gamma} X_\alpha$, where γ is an ordinal. When $\gamma = 0$, we consider as $\prod_{\alpha<\gamma}X_{\alpha}=\{\emptyset\}$, which is a trivial LOTS, for notational conveniences. When $\gamma>0$, every element $x \in X$ is identified with the sequence $\langle x(\alpha) : \alpha < \gamma \rangle$. Recall that the lexicographic order $\langle x \rangle$ on X is defied as follows: for $x, x' \in X$,

$$
x <_X x'
$$
 iff for some $\alpha < \gamma$, $x \restriction \alpha = x' \restriction \alpha$ and $x(\alpha) < x'(\alpha)$,

where $x \restriction \alpha = \langle x(\beta) : \beta < \alpha \rangle$. Then $X = \langle X, \langle X, \lambda_X \rangle$ is a LOTS and called the lexicographic product of LOTS's X_{α} 's.

Now let X_α be a GO-space for every $\alpha < \gamma$ and $X = \prod_{\alpha < \gamma} X_\alpha$. Then the lexicographic product $\hat{X} = \prod_{\alpha < \gamma} X^*_{\alpha}$, which is a LOTS, can be defined. The *lexicographic product of GO-spaces* X_{α} 's is the GO-space $\langle X, \leq_{\hat{X}} \upharpoonright X, \lambda_{\hat{X}} \upharpoonright X$. Obviously this definition extends the lexicographic product of LOTS's, and is reasonable because each X^*_{α} is the smallest LOTS which contains X_{α} as a dense subspace, see [\[4\].](#page--1-0) When $n \in \omega$, then $\prod_{i \leq n} X_i$ is denoted by $X_0 \times \cdots \times X_{n-1}$. If all X_α 's are X , then $\prod_{\alpha \leq \gamma} X_\alpha$ is denoted by X^γ .

Download English Version:

<https://daneshyari.com/en/article/8904250>

Download Persian Version:

<https://daneshyari.com/article/8904250>

[Daneshyari.com](https://daneshyari.com/)