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We investigate the extent to which a c.e. degree can be split into two smaller c.e. 
degrees which are computationally weak. In contrast to a result of Bickford and 
Mills that 0′ can be split into two superlow c.e. degrees, we construct a SJT-hard 
c.e. degree which is not the join of two superlow c.e. degrees. We also prove that 
every high c.e. degree is the join of two array computable c.e. degrees, and that 
not every high2 c.e. degree can be split in this way. Finally we extend a result of 
Downey, Jockusch and Stob by showing that no totally ω-c.a. wtt-degree can be 
cupped to the complete wtt-degree.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

A classic result in computability theory is the result of Sacks which states that every c.e. set can be split 
into a pair of disjoint c.e. sets. Moreover, as Sacks also observed, these sets can be made low. Thus the low 
c.e. degrees generate the c.e. degrees under join.1

In the last fifty or so years, there have emerged a large number of lowness notions associated with c.e. 
(as well as other classes of) sets and degrees. Some notable examples include the array computable degrees, 
the superlow degrees, the K-trivial degrees, the contiguous degrees, the strongly jump traceable degrees, 
the totally ω-c.a. degrees and a whole infinite hierarchy introduced by Downey and Greenberg [4]. These 
concepts will, where necessary, be defined later in context.
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It is natural to ask the extent to which the global structure of the c.e. degrees relates to these lowness 
classes. For example, the celebrated work of Nies and others shows that the K-trivial degrees form an ideal 
[12,9] in the superlow degrees, where A is superlow if A′ ≡tt ∅′. So, in particular, not every c.e. degree is 
the join of two K-trivial degrees.

Most of the lowness concepts are concerned with how hard the set is to approximate. Thus A is called 
array computable if for each f ≤T A, f has a uniformly ω-c.a. approximation. That is, there is a computable 
function h such that for all f ≤T A, there is a computable function g with f(x) = lims g(x, s) where 
|{s : g(x, s +1) �= g(x, s)}| < h(x). We note here that this is not the original definition of array computability; 
it is a characterization due to Downey, Jockusch and Stob [7]. In fact, one can easily see that any choice of 
an order function will do for h, so typically we use h(n) = n.

Array computability is the uniform version of being totally ω-c.a., which has a similar definition, except 
that h can now depend on f . In other words, every function computable from A has an ω-c.a. approximation, 
hence the name “totally ω-c.a.”. The totally ω-c.a. degrees form the first level of a hierarchy based on ordinals 
due to Downey and Greenberg [4]. Each superlow degree is array computable, and each array computable 
degree is totally ω-c.a.

Many results for low degrees do transfer to superlow ones. For instance, the low basis theorem which 
states that every nonempty Π0

1 class has a low member, can be easily seen to be replaced by the superlow 
basis theorem (see for example, Downey and Hirschfeldt [5, Section 2.19.3]). Another example relevant to 
this paper is the result of Bickford and Mills [1] that 0′ is the join of two superlow c.e. degrees.

The first question that follows naturally from these results is of course: Is every c.e. degree the join of two 
superlow degrees? It is reasonable to believe or conjecture that this holds. The proof of Bickford and Mills 
uses the fact that 0′ is the top c.e. degree and can produce enough changes to allow the join of two c.e. sets 
to be complicated while maintaining that each set is itself close to being computable. This is fundamentally 
impossible if the degree we want to split is Turing incomplete. We prove the following:

Theorem 3.1. There are c.e. degrees which cannot be split into the join of two superlow c.e. degrees.

The reader might be tempted to guess that some assurance of computational power, such as highness, 
or being close to ∅′ in some sense, might still allow the given degree to be split in a similar way. We are 
able to show that this intuition is false. Indeed we show that the constructed degree can be extremely close 
to 0′. More specifically, such sets B can be SJT-hard, or even ultrahigh. This means that ∅′ is strongly jump 
traceable relative to B, as we will define in the relevant later section.

Nevertheless, we can recover part of the Bickford and Mills’ result for 0′ for the high degrees:

Theorem 2.1. Every high c.e. degree is the join of two array computable (and low) c.e. degrees.

One might then be tempted to revise the conjecture to say that every c.e. degree is the join of two array 
computable degrees. Again, we show that this is false. In fact, we prove something stronger:

Theorem 4.1. There is a high2 c.e. degree a which is not the join of two totally ω-c.a. degrees.

There are also low degrees where this is true.
The last section briefly explores the notion of “strong cupping”; cupping under the strong reducibility 

≤wtt. We know that the Turing degree of ∅′ is the join of two superlow degrees in the Turing degrees, but it 
is easy to show that this is not true in the wtt-degrees (see [7]). In our section, we prove something stronger. 
No c.e. set of totally ω-c.a. degree can even be wtt-cupped to the complete wtt-degree.

Theorem 5.1. No totally ω-c.a. set can be wtt-cupped. That is, if ∅′ ≤wtt A ⊕D and A is totally ω-c.a., then 
∅′ ≤wtt D.
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