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Assuming AD+DC, the hierarchy of norms is a wellordered structure of equivalence 
classes of ordinal-valued maps. We define operations on the hierarchy of norms, in 
particular an operation that dominates multiplication as an operation on the ranks 
of norms, and use these operations to establish a considerably improved lower bound 
for the length of the hierarchy of norms.
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1. Introduction

As usual in set theory, we refer to the elements of Baire space ωω as real numbers and use the notation R
for ωω. A surjective function ϕ from R onto some ordinal α is called a norm. In analogy to the usual Wadge 
ordering of sets of reals, we can order the norms by setting ϕ ≤NW ψ if and only if there is a continuous 
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f : R → R such that for all x ∈ R, we have ϕ(x) ≤ ψ(f(x)). The First Periodicity Theorem [1] shows that 
in the theory ZF + AD + DC, this ordering is a prewellordering (cf. Theorem 3).

As a consequence, in ZF + AD + DC, we can define an ordinal Σ, the length of the hierarchy of norms, 
to be the order-type of ≤NW. Defining as usual Θ := sup{α; there is a surjection from R to α}, the second 
author proved in [6, Corollary 3 and Theorem 5] that Θ2 ≤ Σ < Θ+.

In this paper, we shall improve the lower bound to Θ
(
ΘΘ

)
. In § 2, we give the basic definitions needed 

for this paper. The structure theory of the Wadge hierarchy will serve as a template for the later sections; 
in § 3, we give a brief overview of this structure theory. One particularly important notion for the Wadge 
hierarchy is the notion of self-duality; in § 4, we introduce the analogous notion for the hierarchy of norms 
and some basic operations that are specific for the hierarchy of norms. In § 5, we discuss operations on the 
hierarchy of norms that can be directly transferred from the Wadge hierarchy (such as addition).

The heart of the paper are §§ 6 & 7, where we define an operation for the hierarchy of norms dominating 
multiplication on the ranks of norms (which is the analogue of the multiplication operation for the Wadge 
hierarchy defined by Steel in [7, § III.D]) and prove the main theorem about it (Theorem 22). Finally, in 
§ 8, we apply this theorem to get the improved lower bound for Σ (Theorem 28) and finish with some open 
questions.

2. Basic definitions & properties

Our axiomatic framework will be ZF; if we assume additional axioms, we shall state them explicitly. Our 
main object of study will be the set of functions from the reals to Θ, i.e., ΘR. We write

lh(ϕ) := sup{α + 1 ; α ∈ ϕ[R]}

for the length of a function ϕ : R → Θ. A function ϕ is called a weak norm if lh(ϕ) < Θ. We have the 
following fact:

Lemma 1. The ordinal Θ is singular if and only if there is some ϕ : R → Θ with lh(ϕ) = Θ; thus, Θ is 
regular if and only if the set of weak norms coincides with ΘR.

Proof. If cf(Θ) = α < Θ, then there are a cofinal f : α → Θ and a surjection g : R → α, thus lh(f ◦ g) = Θ. 
Conversely, if ϕ : R → Θ, then α := ot(ran(ϕ)) < Θ by definition of Θ. For β < α, we define f(β) to be the 
βth element of ran(ϕ). If lh(ϕ) = Θ, then f : α → Θ is cofinal, and hence cf(Θ) ≤ α < Θ. �

A weak norm is called a norm if its range is an ordinal. If ϕ is a norm, then lh(ϕ) = ran(ϕ). We denote 
the set of weak norms by wN and the set of norms by N .

A relation is called a preorder if it is transitive and reflexive. If ≤ is a preorder on a set X, then we 
can define the corresponding equivalence relation ≡ by a ≡ b :⇔ a ≤ b ∧ b ≤ a for all a, b ∈ X, and the 
corresponding strict preorder relation < by a < b :⇔ a ≤ b ∧ ¬a ≡ b for all a, b ∈ X. A preorder ≤ induces 
a partial order on the ≡-equivalence classes; we denote this partial order with the same symbol ≤.

As mentioned before, for ϕ, ψ ∈ ΘR, we write ϕ ≤NW ψ if and only of there is a continuous f : R → R

such that for all x ∈ R, we have ϕ(x) ≤ ψ(f(x)). We write ϕ ≤NL ψ if there is a Lipschitz function with 
the same property. These relations are preorders and we denote the corresponding equivalence relations by 
≡NW and ≡NL and their corresponding strict preorder relations by <NW and <NL.

It is easy to see that if lh(ϕ) < lh(ψ), then ϕ <NL ψ; furthermore, any two norms of length α + 1 for 
some α are Lipschitz-equivalent. As usual, for x, y ∈ R, we define a real x ∗ y, constructed by interleaving 
x and y, as follows:
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