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Let m and n be cardinals with 3 ≤ m, n ≤ ω. We show that the class of posets 
that can be embedded into a distributive lattice via a map preserving all existing 
meets and joins with cardinalities strictly less than m and n respectively cannot be 
finitely axiomatized.
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1. Introduction

Let m and n be cardinals with 3 ≤ m, n ≤ ω. It is shown in [8] that the problem of deciding whether a 
given finite poset can be embedded into a distributive lattice via a map preserving existing meets and joins 
with cardinalities strictly less than m and n respectively is NP-complete for all m and n except, possibly, the 
case where both m and n are equal to 3. By [9, Proposition 3.1], polynomial time algorithms exist for checking 
whether a fixed first-order sentence holds in finite models. So, if a class of posets with this kind of embedding 
property for some suitable m and n were finitely axiomatizable, it would imply that P = NP. Needless to 
say, this implication strongly suggests that none of these classes is finitely axiomatizable. However, intuitive 
finite first-order axiomatizations do exist for semilattices in similar situations [1,7].
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Assuming finiteness, or a suitable choice principle, this problem of embedding posets into distributive 
lattices is equivalent to the problem of embedding posets into powerset algebras via maps preserving meets 
and joins smaller than specified cardinals m and n. Note that, since m and n are greater than 2, such 
an embedding will automatically preserve any relative complements that exist in the poset. This has been 
studied in [4,3] using the terminology (m, n)-representable (see Definition 2.1). In particular, it was shown 
that all the classes where m, n ≤ ω are elementary [3, Theorem 4.5], though explicit axioms are not known. 
In the cases where either m or n is equal to ω, the corresponding class is not finitely axiomatizable. This 
was shown directly in [3], and also follows from the corresponding result for semilattices [6]. However, the 
cases where m and n are both finite were left open.

Since for 3 ≤ m, n ≤ ω the classes of (m, n)-representable posets are all elementary, they will be finitely 
axiomatizable if and only if their complements are elementary. By Łoś’ theorem, these complements will be 
elementary only if they are closed under ultraproducts.

For a poset P and cardinals α and β, the existence of an (α, β)-representation for P is equivalent to a sepa-
ration property generalizing the separation of distributive lattices by prime filters (the Prime Ideal Theorem 
for distributive lattices). In this note we use this property to construct a sequence of finite posets, all of which 
fail to be (3, 3)-representable, and an ultraproduct of this sequence which is (ω, ω)-representable, thus prov-
ing that the class of (m, n)-representable posets cannot be finitely axiomatizable for any choice of n, m ≥ 3.

The classes of (α, β)-representable posets, when α and/or β are uncountable, and the classes where all
meets and/or joins must be preserved, are known to not be elementary at all, though in some cases they 
are pseudoelementary. See [4, Figure 2] for a summary.

In Section 2 we introduce the basic notation, definitions and results for representable posets (using the 
notation of [3]). Finally in Section 3 we construct the required sequence of posets and prove the necessary 
results to support our main claim.

2. Representable posets

We begin with some notational conventions. Given a poset P and a subset S ⊆ P we define S↑ = {p ∈
P : p ≥ q for some q ∈ S}. Given p ∈ P we define p↑ = {p}↑. Given a set I, an ultrafilter U of ℘(I), and 
posets Pi for i ∈ I we let 

∏
U Pi be the ultraproduct with respect to U . For an element of 

∏
U Pi we write, 

e.g. [x] ∈
∏

U Pi.

Definition 2.1 ((α, β)-representable). Let α and β be cardinals. We say a poset P is (α, β)-representable if 
there is a field of sets F , and a 1-1 map h : P → F such that:

1. Whenever S is a subset of P with |S| < α, if 
∧

S exists in P , then h(
∧

S) =
⋂

h[S].
2. Whenever T is a subset of P with |T | < β, if 

∨
T exists in P then h(

∨
T ) =

⋃
h[T ].

If α = β we just write α-representable.

Definition 2.2 ((α, β)-filter). Let α and β be cardinals, let P be a poset, and let Γ be an up-closed subset 
of P . We say Γ is an (α, β)-filter if:

1. Whenever S ⊆ Γ and |S| < α, if 
∧

S exists, then 
∧

S ∈ Γ.
2. Whenever T ⊆ P with |T | < β, if 

∨
T exists and 

∨
T ∈ Γ, then T ∩ Γ �= ∅.

I.e. Γ is both α-complete and β-prime. If α = β we just write α-filter.

The following result relates (α, β)-representability to separation by (α, β)-filters. It appears explicitly in 
this form as [3, Theorem 2.7], but the idea of using this kind of separation property for representability-like 
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