Contents lists available at ScienceDirect

Annals of Pure and Applied Logic

www.elsevier.com/locate/apal

Jumps of computably enumerable equivalence relations $\stackrel{\text{\tiny{$\Xi$}}}{\sim}$

Uri Andrews^a, Andrea Sorbi^{b,*}

^a Department of Mathematics, University of Wisconsin, Madison, WI 53706-1388, USA
^b Dipartimento di Ingegneria Informatica e Scienze Matematiche, Università Degli Studi di Siena, I-53100 Siena, Italy

ARTICLE INFO

Article history: Received 17 May 2017 Received in revised form 24 October 2017 Accepted 15 November 2017 Available online 6 December 2017

MSC: 03D25 03D30 03D45 03F15

Keywords: Computably enumerable equivalence relation Computable reducibility on equivalence relations Halting jump

ABSTRACT

We study computably enumerable equivalence relations (or, ceers), under computable reducibility \leq , and the halting jump operation on ceers. We show that every jump is uniform join-irreducible, and thus join-irreducible. Therefore, the uniform join of two incomparable ceers is not equivalent to any jump. On the other hand there exist ceers that are not equivalent to jumps, but are uniform join-irreducible: in fact above any non-universal ceer there is a ceer which is not equivalent to a jump, and is uniform join-irreducible. We also study transfinite iterations of the jump operation. If a is an ordinal notation, and E is a ceer, then let $E^{(a)}$ denote the ceer obtained by transfinitely iterating the jump on E along the path of ordinal notations up to a. In contrast with what happens for the Turing jump and Turing reducibility, where if a set X is an upper bound for the A-arithmetical sets then $X^{(2)}$ computes $A^{(\omega)}$, we show that there is a ceer R such that $R \geq \mathrm{Id}^{(n)}$, for every finite ordinal n, but, for all k, $R^{(k)} \not\geq \mathrm{Id}^{(\omega)}$ (here Id is the identity equivalence relation). We show that if a, b are notations of the same ordinal less than ω^2 , then $E^{(a)} \equiv E^{(b)}$, but there are notations a, b of ω^2 such that $\mathrm{Id}^{(a)}$ and $\mathrm{Id}^{(b)}$ are incomparable. Moreover, there is no non-universal ceer which is an upper bound for all the ceers of the form $\mathrm{Id}^{(a)}$ where a is a notation for ω^2 .

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Recently, there has been a renewed interest in studying equivalence relations on the set ω of natural numbers under the reducibility \leq , where $R \leq S$ if there exists a computable function f such that, for all $x, y \in \omega$,

$$x \ R \ y \Leftrightarrow f(x) \ S \ f(y).$$

* Corresponding author.

 $\label{eq:https://doi.org/10.1016/j.apal.2017.12.001} 0168\text{-}0072/\ensuremath{\odot}\ 2017$ Elsevier B.V. All rights reserved.

 $^{^{\}pm}$ This work was partially supported by Grant 3952/GF4 of the Science Committee of the Republic of Kazakhstan. Andrews's research was partly supported by NSF grant DMS-1600228. Sorbi is a member of INDAM-GNSAGA; he was partially supported by PRIN 2012 "Logica Modelli e Insiemi".

E-mail addresses: andrews@math.wisc.edu (U. Andrews), andrea.sorbi@unisi.it (A. Sorbi).

URLs: http://www.math.wisc.edu/~andrews/ (U. Andrews), http://www3.diism.unisi.it/~sorbi/ (A. Sorbi).

The first systematic investigation of this reducibility goes back to Ershov (see e.g., [9]). More recent papers, with applications to computable model theory and computable algebra, include [7,11,10]. A natural and interesting particular case is provided by restriction of \leq to computably enumerable equivalence relations (which will be abbreviated as *ceers*). The earliest paper fully dedicated to ceers (therein called *positive* equivalence relations) is [8], followed by other papers motivated by applications to logic, in view of the numerous examples of ceers naturally arising in logic: see for instance [3,4,13,14,17,19].

Let \equiv be the equivalence relation given by $R \equiv S$ if $R \leq S$ and $S \leq R$. Then one can define, in the usual way, the degrees of equivalence relations (i.e., the \equiv -equivalence classes of equivalence relations), and in particular the poset \mathcal{P} of degrees of ceers, which is bounded (see for instance [1]), i.e., with least element $\mathbf{0}$, consisting of just the trivial ceer, and greatest element $\mathbf{1}$: the ceers belonging to $\mathbf{1}$ are called *universal*. It is also worth recalling that this structure extends the structure of the 1-degrees of infinite c.e. sets: Given a set X define R_X to be the equivalence relation so that $x R_X y$ if and only if x = y or $x, y \in X$. It is not difficult to show (see for instance [1]) that if X, Y are infinite c.e. sets then $X \leq_1 Y$ if and only if $R_X \leq R_Y$; moreover if Y is c.e. and $Z \leq R_Y$ then $Z \equiv R_X$ for some c.e. set X. It turns out in this way that the interval of degrees of ceers [deg(Id), deg(R_K)] (where Id denotes the identity relation) is isomorphic to the interval of c.e. 1-degrees [$\mathbf{0}_1, \mathbf{0}'_1$], where $\mathbf{0}_1$ is the 1-degree of any infinite and coinfinite decidable set, and $\mathbf{0}'_1$ is the 1-degree of the halting set K. This fact has been exploited in [1] to show that the first order theory of the poset of degrees of ceers is undecidable.

Gao and Gerdes [12] define a useful notion of jump of a ceer.

Definition 1.1. Given a ceer R, define

$$x R' y \Leftrightarrow [x = y \text{ or } \varphi_x(x) \downarrow R \varphi_y(y) \downarrow].$$

The ceer R' is called the *halting jump ceer of* R: in the following we simply call it the *jump* of R.

The main properties of the operation $R \mapsto R'$ are summarized in the following theorem:

Theorem 1.2. [12,1] The following properties hold:

- (1) $R \le R';$
- (2) $R \leq S$ if and only if $R' \leq S'$;
- (3) If R is not universal then R' is not universal;
- (4) if R is not universal, then R < R'.

Proof. Item (1) is [12, Proposition 8.3(1)]; item (2) is [12, Theorem 4]; item (3) is [12, Corollary 8.5(2)]; item (4) is [1, Theorem 4.3]. \Box

In particular we have a well-defined jump operation on degrees, given by $(\deg(R))' = \deg(R')$: this jump operation is an order embedding, and takes every degree to a bigger degree, except when it can not become strictly bigger, i.e., on the greatest element of \mathcal{P} . A degree of a ceer is a *jump degree* if it in the range of the jump operation on degrees.

Given equivalence relations R, S on ω , let $R \oplus S$ be defined by

$$x \ R \oplus S \ y \Leftrightarrow \begin{cases} u \ R \ v & \text{if } x = 2u \text{ and } y = 2v, \\ u \ S \ v & \text{if } x = 2u + 1 \text{ and } y = 2v + 1. \end{cases}$$

Notice that \oplus induces a well defined binary operations on degrees: if **a** and **b** are the degrees of R and S, respectively, then $\mathbf{a} \oplus \mathbf{b}$ is the degree of $R \oplus S$. Moreover $R \oplus S$ satisfies $R, S \leq R \oplus S$.

Download English Version:

https://daneshyari.com/en/article/8904312

Download Persian Version:

https://daneshyari.com/article/8904312

Daneshyari.com