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Abstract In this article, we study the existence of infinitely many solutions to the degen-

erate quasilinear elliptic system

−div(h1(x)|∇u|p−2∇u) = d(x)|u|r−2
u + Gu(x, u, v) in Ω,

−div(h2(x)|∇v|q−2∇v) = f(x)|v|s−2
v + Gv(x, u, v) in Ω,

u = v = 0 on ∂Ω,

where Ω is a bounded domain in R
N with smooth boundary ∂Ω, N ≥ 2, 1 < r < p < ∞,

1 < s < q < ∞; h1(x) and h2(x) are allowed to have “essential” zeroes at some points in

Ω; d(x)|u|r−2u and f(x)|v|s−2v are small sources with Gu(x, u, v), Gv(x, u, v) being their

high-order perturbations with respect to (u, v) near the origin, respectively.
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1 Introduction

The purpose of this article is to study the multiplicity of solutions for the system with small

sources: 




−div(h1(x)|∇u|p−2∇u) = d(x)|u|r−2u+Gu(x, u, v) in Ω,

−div(h2(x)|∇v|q−2∇v) = f(x)|v|s−2v +Gv(x, u, v) in Ω,

u = v = 0 on ∂Ω,

(1.1)
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where Ω ⊂ R
N is a bounded domain with smooth boundary ∂Ω, N ≥ 2, 1 < r < p < ∞,

1 < s < q < ∞; h1(x) and h2(x) are allowed to have “essential” zeroes at some points in Ω;

d(x) and f(x) can be very small, in particular, small supports and sign changing for d(x) and

f(x) are permitted and the terms Gu(x, u, v) and Gv(x, u, v) will be considered as high-order

perturbations of the small sources d(x)|u|r−2u and f(x)|v|s−2v with respect to (u, v) near the

origin respectively.

For the semilinear case of single equation




−∆u = λ|u|r−2u+ g(x, u) in Ω,

u = 0 on ∂Ω,
(1.2)

where r ∈ (1, 2) and λ > 0, existence of infinitely many solutions has attracted much attention

and has been extensively studied in the last three decades. For example, in [1] Ambrosetti-

Badiale obtained infinitely many solutions of (1.2) with negative energy when g(x, u) ≡ 0,

using a dual variational formulation. Ambrosetti-Brezis-Cerami [2] and Garcia-Peral [3] proved

that (1.2) has infinitely many solutions with negative energy provided that g(x, u) = |u|m−2u,

m ∈ (2, 2∗], where 2∗ = 2N/(N − 2) for N ≥ 3 and 2∗ = ∞ for N = 1, 2, and 0 < λ < λ∗ for

some finite λ∗. For 2 < m < 2∗, Bartsch-Willem [4] removed the restriction on λ and obtained

infinitely many solutions under the assumptions that g(x, u) = µ|u|m−2u, m ∈ (2, 2∗), µ ∈ R,

and λ > 0. It should be noted that in all quoted articles above, the global property of g(x, u)

for u large was used in an essential way to derive multiplicity results of solutions with negative

energy. It was Wang [5] who first observed that existence of infinitely many solutions of (1.2)

with negative energy relies only on local behavior of the equation and assumptions on g(x, u)

only for small u are required. More precisely, he proved that if 1 < r < 2, g ∈ C(Ω× (−δ, δ),R)

for some δ > 0, g is odd in u and g(x, u) = o(|u|r−1) as |u| → 0 uniformly in x ∈ Ω, then

for all λ > 0, (1.2) has a sequence of weak solutions with negative energy, thus improving all

the previous results. It is worth pointing out that positivity λ > 0 plays a crucial role in his

argument. Recently, Guo [6] and Jing-Liu [7] considered the following problem





−∆u = d(x)|u|r−2u+ g(x, u) in Ω,

u = 0 on ∂Ω,
(1.3)

where d ∈ C(Ω) is allowed to change sign, more exactly,

Ω+

d = {x ∈ Ω|d(x) > 0} 6= ∅. (1.4)

In [6], Guo proved that if 1 < r < 2, (1.4) holds, g ∈ C(Ω × (−δ, δ),R) for some δ > 0, g

is odd in u and g(x, u) = o(|u|) as |u| → 0 uniformly in x ∈ Ω, then (1.3) has a sequence of

nontrivial solutions whose L∞-norms converge to zero. Jing-Liu [7] removed the oddness of the

perturbation term g, and assumed that g ∈ C(Ω×(−δ, δ),R) for some δ > 0, g(x, u) = o(|u|τ−1)

as |u| → 0 uniformly in x ∈ Ω, where 2+N(2−r)/r < τ ≤ 2∗ for N ≥ 3 and 2+N(2−r)/r < τ

for N = 1, 2. Chung [8] further showed the existence of infinitely many solutions of the system

(1.1) with linear principal parts, that is,

p = q = 2,
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