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Abstract This paper is concerned with the stability of traveling wavefronts for a population

dynamics model with time delay. Combining the weighted energy method and the comparison

principle, the global exponential stability of noncritical traveling wavefronts (waves with

speeds c > c∗, where c = c∗ is the minimal speed) is established, when the initial perturbations

around the wavefront decays to zero exponentially in space as x → −∞, but it can be allowed

arbitrary large in other locations, which improves the results in [9, 18, 21].
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1 Introduction

In this paper, we consider the following nonlocal reaction-diffusion equation with time delay

ut(t, x) = ∆u(t, x) − δu(t, x) + f((g ∗ u)(t, x)), (t, x) ∈ R+ × R, (1.1)

with the initial data

u(s, x) = u0(s, x), s ∈ [−τ, 0], x ∈ R, (1.2)

where

f(w) = pwe−aw,

and

(g ∗ u)(t, x) =

∫ +∞

−∞

g(y)u(t − τ, x − y)dy.

This model represents the population distribution of single species such as the Australian blowfly

[8, 10, 15], which is derived from the original delay ODE model [3] based on Nicholson’s ex-

perimental data [13, 14]. Here, u(t, x) denotes the mature population at time t and location

x, δ > 0 is the death rate of the mature population, τ > 0 is the maturation time (the time

required for a newborn to become matured). f(w) is Nicholson’s birth function, a > 0 is a

∗Received September 6, 2016; revised August 18, 2017. This work was supported by NSF of China

(11401478), Gansu Provincial Natural Science Foundation (145RJZA220).
†Corresponding author: Guobao ZHANG

http://crossmark.crossref.org/dialog/?doi=10.1016/S0252-9602(17)30132-7&domain=pdf


290 ACTA MATHEMATICA SCIENTIA Vol.38 Ser.B

constant, p > 0 is the impact of the death on the immature population. g(x) is the heat kernel

in the form of

g(x) =
1

√
4πρ

e−
x2

4ρ with

∫ +∞

−∞

g(x)dx = 1.

When g(x) is replaced by the Dirac-δ(x) function, (1.1) reduces to the local Nicholson’s

blowflies equation with discrete delay

ut(t, x) = ∆u(t, x) − δu(t, x) + pu(t − τ, x)e−au(t−τ,x). (1.3)

In recent years, traveling wave solutions of (1.1) and (1.3) were widely investigated (see

[5–11, 16, 21]). A traveling wave solution of (1.1) and (1.3) is a special translation invariant

solution of the form u(t, x) = φ(ξ), ξ = x + ct, where φ is the wave profile that propagates

through the one-dimensional spatial domain at a constant velocity c > 0. If φ(ξ) is monotone

in ξ ∈ R, then it is called a traveling wavefront. In the study of traveling wave solutions, the

stability of traveling wave solutions is an important and difficult object. We refer the readers

to [2, 4, 6, 7, 10–12, 17, 18, 20–24].

For the local equation (1.3), the stability of traveling wave solutions has been well done.

We provide some background in two cases: 1 < p/δ ≤ e and p/δ > e. In the first case, the

birth rate function f(u) = pue−au is monotonically increasing for u ∈ [0, 1
a ln p

δ ]. In 2004,

Mei et al. [10] proved that the wavefronts of (1.3) are stable for the wave speed c > 2
√

p − δ

with a sufficiently small initial perturbation by the weighted energy method. Later on, by the

comparison principle together with the weighted energy method, Lin and Mei [6] improved the

stability of traveling waves to c > c∗ (c∗ is minimal speed), when the time delay τ ≪ 1, and the

initial perturbation around the wavefront decays to zero exponentially in space as x → −∞,

but it can be large in other locations. In [11], Mei et al. further obtained the stability for

all waves of (1.3) with speed c > c∗ but no restriction is needed for the time delay τ . The

approach they used is still the weighted energy method together with the comparison principle,

but the weight function is different from that in [6]. Recently, by the weighted energy method

and the Green function technique, Mei, Ou and Zhao [12] improved the stability results in [11],

and proved that all noncritical wavefronts (waves with speed c > c∗) are globally exponentially

stable, and critical wavefronts (waves with speed c = c∗) are globally algebraically stable when

the initial perturbations around the wavefront decay to zero exponentially near the negative

infinity regardless of the magnitude of time delay. In the second case, the birth rate f(u) is

nonmonotone on [0, 1
a ln p

δ ]. Lin et al. [7] used the technical weighted energy method to prove

the exponential stability of all noncritical traveling waves. In [1], Chern et al. still applied the

technical weighted-energy method, but with some new flavors to handle the critical oscillatory

waves, and proved that the critical traveling waves (monotone or oscillatory) are also time-

asymptotically stable.

For the nonlocal equation (1.1) with monotone birth function, the stability of traveling

wavefronts was investigated in [9, 18, 20, 21]. Wu et al. [20] studied a nonlocal reaction-

diffusion equation with delay

ut = Duxx − h(u(x, t)) + f

(∫

R

g(y)S(u(x − y, t − τ))dy

)
. (1.4)

By the (technical) weighted energy method, they proved that the traveling wavefront of (1.4)

is exponentially stable, when the initial perturbation around the wave is suitable small in a
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