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Abstract In this paper, we present a nonmonotone smoothing Newton algorithm for solving

the circular cone programming (CCP) problem in which a linear function is minimized or

maximized over the intersection of an affine space with the circular cone. Based on the

relationship between the circular cone and the second-order cone (SOC), we reformulate the

CCP problem as the second-order cone problem (SOCP). By extending the nonmonotone

line search for unconstrained optimization to the CCP, a nonmonotone smoothing Newton

method is proposed for solving the CCP. Under suitable assumptions, the proposed algorithm

is shown to be globally and locally quadratically convergent. Some preliminary numerical

results indicate the effectiveness of the proposed algorithm for solving the CCP.
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1 Introduction

Circular cone programming (CCP) problems (see [1, 2]) are an important class of convex

optimization problems in which we minimize or maximize the linear function over the intersec-

tion of an affine space with the circular cone. In this paper, we focus on the following CCP

problem

(P ) min
{
cT x : Ax = b, x ∈ Cn

θ

}
, (1.1)

where θ ∈ (0, π
2 ) is a given angle, A ∈ Rm×n, c ∈ Rn and b ∈ Rm are the data, x ∈ Cn

θ is the

variable. And the set Cn
θ is the n-dimension circular cone (CC), which is expressed as

Cn
θ :=

{
x = (x1, x2:n) ∈ R × Rn−1 : cos θ‖x‖ ≤ x1

}
, (1.2)

where x2:n = (x2, · · · , xn) ∈ Rn−1, and ‖ · ‖ refers to the Euclidean norm of a vector.

As a special kind of the non-self-dual cone, the circular cone [3] is a pointed closed convex

cone having hyperspherical sections orthogonal to its axis of revolution around which the cone

is invariant to rotation. When the rotation angle θ = 45◦, the n-dimension circular cone reduces

to the n-dimension second-order cone (SOC) Kn given by

Kn :=
{
x = (x1, x2:n) ∈ R × Rn−1 : ‖x2:n‖ ≤ x1

}
. (1.3)

Thus, the CCP includes the second-order cone programming (SOCP) [4] as a special case. The

dual problem of (1.1) is

(D) max
{
bT y : AT y + s = c, s ∈ (Cn

θ )∗
}

, (1.4)

where y ∈ Rm is the variable, and s ∈ (Cn
θ )∗ is the slack variable, here (Cn

θ )∗ is the dual cone

of Cn
θ defined by

(Cn
θ )∗ :=

{
x = (x1, x2:n) ∈ R × Rn−1 : ‖x2:n‖ ≤ x1 cot θ

}
.

The sets of strictly feasible solutions of (1.1) and (1.4) are

F 0(P ) = {x : Ax = b, x ∈ intCn
θ } ,

F 0(D) =
{
(y, s) : AT y + s = c, s ∈ int(Cn

θ )∗
}

,

respectively, where intCn
θ (respectively, int(Cn

θ )∗) denotes the interior of Cn
θ (respectively,

(Cn
θ )∗). Throughout this paper, we assume that both (1.1) and (1.4) are strictly feasible,

i.e., F 0(P ) × F 0(D) 6= ∅. Thus, it can be shown that both (1.1) and (1.4) have optimal so-

lutions, and finding optimal solutions of the CCP (1.1) and (1.4) is equivalent to solving the

following optimality conditions, i.e., KKT conditions,




Ax = b, x ∈ Cn
θ ,

AT y + s = c, s ∈ (Cn
θ )∗,

xT s = 0.

(1.5)

Unfortunately, because (Cn
θ )∗ and Cn

θ in the above conditions are not usually the same

cone with θ 6= 45◦, we have a formidable task to directly apply smoothing Newton algorithms
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