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Abstract Let u = u(t,x,p) satisfy the transport equation ∂u

∂t
+ p

p0

∂u

∂x
= f , where f =

f(t,x,p) belongs to Lp((0, T ) × R3
× R3) for 1 < p < ∞ and ∂

∂t
+ p

p0

∂

∂x
is the relativistic-

free transport operator from the relativistic Boltzmann equation. We show the regularity of∫
R3 u(t,x,p)dp using the same method as given by Golse, Lions, Perthame and Sentis. This

average regularity is considered in terms of fractional Sobolev spaces and it is very useful for

the study of the existence of the solution to the Cauchy problem on the relativistic Boltzmann

equation.
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1 Introduction

We are concerned with the average regularity of the solution to an equation with the

relativistic-free transport operator from the relativistic Boltzmann equation. Let us begin with

the relativistic Boltzmann equation in the following form

∂u

∂t
+

p

p0

∂u

∂x
= Q(u, u), (1.1)

where u = u(t,x,p) is a distribution function of a one-particle relativistic gas with the time

t ∈ (0,∞), the position x ∈ R3, and the momentum p ∈ R3; p0 = (1 + |p|2)1/2 denotes the

energy of a dimensionless relativistic gas particle with the momentum p; ∂
∂t

+ p

p0

∂
∂x

is called

the relativistic-free transport operator; Q(u, u) is the relativistic Boltzmann collision operator

which can be written as the difference between the gain and loss terms respectively given by

Dudyński and Ekiel-Jeżewska [14] in the following forms

Q+(u, u) =

∫

R3×S2

gs1/2

p0p∗0
σ(g, θ)u(t,x,p′)u(t,x,p′

∗)dωdp∗, (1.2)

Q−(u, u) =

∫

R3×S2

gs1/2

p0p∗0
σ(g, θ)u(t,x,p)u(t,x,p∗)dωdp∗. (1.3)
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It is worth mentioning that the gain and loss terms of the relativistic Boltzmann equation can

be expressed in other various forms (see [8]). The other different parts in eqs. (1.2) and (1.3)

are explained as follows.

p and p∗ are dimensionless momenta of two relativistic particles immediately before colli-

sion while p′ and p′
∗ are dimensionless momenta after collision; p∗0 = (1+ |p∗|2)1/2 denotes the

dimensionless energy of the colliding relativistic gas particle with the momentum p∗ before colli-

sion, and as used below in the same way, p′0 = (1+|p′|2)1/2 and p′∗0 = (1+|p′
∗|2)1/2 represent the

dimensionless energy of the two relativistic particles after collision. s = |p∗0 + p0|2 − |p∗ + p|2
and s1/2 is the total energy in the center-of-mass frame [14]; g =

√
|p∗ − p|2 − |p∗0 − p0|2/2

and 2g is in fact the value of the relative momentum in the center-of-mass frame [14]; it can be

seen that s = 4 + 4g2; σ(g, θ) is the differential scattering cross section of the variable g and

the scattering angle θ; R3 is a three-dimensional Euclidean space and S2 a unit sphere surface

with an infinitesimal element dω = sin θdθdϕ for the scattering angle θ ∈ [0, π] and the other

solid angle ϕ ∈ [0, 2π] in the center-of-momentum system, and the scattering angle θ is defined

by cos θ = 1 − 2[(p0 − p∗0)(p0 − p′0) − (p − p∗)(p − p′)]/(4 − s).

There was a long history of the study of the relativistic Boltzmann equation as one of the

most importance in the relativistic kinetic theory. The study of the relativistic kinetic theory

began in 1911 when Jüttner [31] derived an equilibrium distribution function of relativistic

gases. Lichnerowicz and Marrot [24] were the first to derive the full relativistic Boltzmann

equation including the collision operator in 1940. The research of this equation can be roughly

classified into four aspects: 1) the derivation of this equation; 2) its relativistic hydrodynamic

limit; 3) its Chapman-Enskog approximation and hydrodynamic modes; 4) the existence and

uniqueness of the solution to the Cauchy problem on it. For both of 1) and 2), we can see

the recent references from Dolan & Zenios [13], Debbasch & Leeuwen [9, 10], Tsumura &

Kunihiro [38] and Denicol et al. [11]. For 3), in the early 60’s, many researchers, such as Israel

[23], applied the Chapman-Enskog expansion into studying the approximative solution to the

relativistic Boltzmann equation. The progress of the last research field are recently great. In

1967, Bichteler [5] first proved that the relativistic Boltzmann equation admits a unique local

solution under the assumptions that the differential scattering cross-section is bounded and

that the initial distribution function decays exponentially with energy. In 1988, Dudyński and

Ekiel-Jeżewska [14] proved that the Cauchy problem on the linearized relativistic Boltzmann

equation has a unique solution in L2 space. Four years later, Dudyński and Ekiel-Jeżewska [15]

showed that there exists a DiPerna-Lions renormalized solution [12] to the Cauchy problem on

the relativistic Boltzmann equation with large initial data in the case of the relativistic soft

interactions. Glassey and Strauss [18] proved in 1993 that a unique global smooth solution to

this problem exponentially converges to a relativistic Maxwellian as the time goes to infinity if all

initial data are periodic in the space variable and near equilibrium. Then in 1995, Glassey and

Strauss extended the above result to the whole space case [19] and found that the solution has

the property of polynomial convergence with respect to the time. In 1996, Andréasson [1] showed

the regularity of the gain term and the strong L1 convergence to equilibrium for the relativistic

Boltzmann equation. Afterward, Jiang gave the global existence of solution to the relativistic

Boltzmann equation with hard interactions in the whole space for initial data with finite mass,

energy and inertia [27], or in a periodic box for initial data with finite mass and energy [28, 29].
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