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Abstract A closed linear relation T in a Banach space X is called left (resp. right) Fredholm

if it is upper (resp. lower) semiFredholm and its range (resp. null space) is topologically

complemented in X. We say that T is left (resp. right) Browder if it is left (resp. right)

Fredholm and has a finite ascent (resp. descent). In this paper, we analyze the stability

of the left (resp. right) Fredholm and the left (resp. right) Browder linear relations under

commuting Riesz operator perturbations. Recent results of Zivkovic et al. to the case of

bounded operators are covered.
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1 Introduction

We adhered to the notations and terminology of [6] and [14]. Let E, F and G be linear

spaces over K = R or C. A linear relation A from E to F is any mapping from a linear

subspace D(A) of E called the domain of A, into the collection of nonempty subsets of F such

that A(αx1 + βx2) = αAx1 + βAx2 for all nonzero scalars α, β and x1, x2 ∈ D(A). For x ∈ E,

x /∈ D(A) we define Ax = ∅. With this convention, we have that D(A) := {x ∈ E : Ax 6= ∅}.
The set of all linear relations from E to F is denoted by LR(E, F ). An element A ∈ LR(E, F )

is uniquely determined by its graph, G(A), which is defined by

G(A) := {(x, y) ∈ E × F : x ∈ D(A), y ∈ Ax},

so that, we can identify A with its graph. Moreover, in the sequel, the term “subspace” always

refers to a linear subspace.

Let A ∈ LR(E, F ). The inverse of A is the linear relation A−1 ∈ LR(F, E) given by

G(A−1) := {(y, x) : (x, y) ∈ G(A)}. The subspaces N(A) := A−1(0), R(A) := A(D(A)) :=

AD(A) and A(0) are called the null space, the range and the multivalued part of A, respectively.

We say that A is injective if N(A) = {0} and A is called surjective if R(A) = F . Observe that

A is the graph of an operator if and only if A(0) = {0} and the following equalities hold

D(A−1) = R(A), R(A−1) = D(A), and N(A−1) = A(0).
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If M is a subspace of E then A |M is given by G(A |M ) := G(A) ∩ (M × F ) and if E = F

then AM is defined by G(AM ) := G(A) ∩ (M × M).

For linear relations A, B ∈ LR(E, F ) and C ∈ LR(F, G) and λ ∈ K the linear relations

A + B, A ⊕ B, λA and CA are defined by

G(A + B) := {(x, y + z) : (x, y) ∈ A, (x, z) ∈ B},

G(A+̂B) = {(x + u, y + v) : (x, u) ∈ A, (y, v) ∈ B},

this last sum is direct when G(A) ∩ G(B) = {(0, 0)}. In such case we write A ⊕ B,

G(λA) := {(x, λy) : (x, y) ∈ A},

G(CA) := {(x, z) : (x, y) ∈ A, (y, z) ∈ C for some y ∈ F}.

Assume that E = F and let A ∈ LR(E, E) := LR(E), that is, A is a linear relation in E.

Then A − λ := A − λI where I is the identity operator in E and the resolvent set of A is the

set ρ(A) := {λ ∈ K : A − λ is injective and surjective}.
The product of linear relations is clearly associative. Hence An, n ∈ Z, is defined as usual

with Ao := I and A1 := A. The hyper-kernel, the hyper-range and the singular chain manifold

of A ∈ LR(E) are defined by

N∞(A) := ∪n∈NN(An), R∞(A) := ∩n∈NR(An)

and

Rc(A) := (∪n∈NN(An)) ∩ (∪n∈NAn(0)),

respectively.

The ascent and the descent of A ∈ LR(E) are given by

a(A) := min{p ∈ N ∪ {0} : N(Ap) = N(Ap+1)},

d(A) := min{q ∈ N ∪ {0} : R(Aq) = R(Aq+1)},

respectively, whenever these minima exist. If no such numbers exist the ascent and the descent

of A are defined to be ∞. Clearly A is injective if and only if a(A) = 0 and A is surjective if

and only if d(A) = 0. In [14], the authors introduce and give a systematic treatment of these

notions of ascent and descent of a linear relation in a linear space. They show that many of

the results of Taylor [17] and Kaashoek [11] for operators remain valid in the context of linear

relations only under the additional condition Rc(A) = {0}.
Let X and Y be normed spaces and let T ∈ LR(X, Y ). Then it is easy to see that QT T

is an operator where QT denotes the quotient map Q
T (0)

from Y onto Y/T (0). We say that T

is closed if its graph is a closed subspace of X × Y , continuous if ‖ T ‖:=‖ QT T ‖< ∞ and T

is called bounded if it is everywhere defined and continuous. Recall that a closed subspace M

of X is topologically complemented in X if there exists a closed subspace M1 of X such that

X = M ⊕M1. If this is the case then M1 is called a topological complement of M in X . In [7]

the authors showed that the notion of topological complementation can be studied in terms of

multivalued linear projections.

We also adopt the following notation: if M and N are subspaces of X and X ′ (the dual

space of X), then M⊥ := {x′ ∈ X ′ : x′(M) = 0} and ⊥N := {x ∈ X : N(x) = 0}. It is know

that M =⊥ (M⊥) and (⊥N)⊥ is the closure of N in the σ(X ′, X)- topology in X ′.
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