

Acta Mathematica Scientia 2017,37B(4):889–910

http://actams.wipm.ac.cn

RENORMALIZED SOLUTIONS OF ELLIPTIC EQUATIONS WITH ROBIN BOUNDARY CONDITIONS[∗]

Olivier GUIBÉ^{1†} Alip OROPEZA^{1,2}

1. Laboratoire de Mathématiques Raphaël Salem, CNRS, UMR 6085, Université de Rouen, Avenue de l'Université, BP 12, 76801 Saint-Étienne du Rouvray cedex, France 2. University of the Philippines Diliman, Institute of Mathematics, 1101 Diliman, Quezon City, Philippines

E-mail : olivier.guibe@univ-rouen.fr; Alip.Oropeza@etu.univ-rouen.fr; aaoropeza@math.upd.edu.ph

Abstract In the present paper, we consider elliptic equations with nonlinear and nonhomogeneous Robin boundary conditions of the type

> $\sqrt{ }$ \int $\overline{\mathcal{L}}$ $-\operatorname{div}(B(x, u)\nabla u) = f$ in Ω , $u = 0$ on Γ_0 , $B(x, u)\nabla u \cdot \vec{n} + \gamma(x)h(u) = g$ on Γ_1 ,

where f and g are the element of $L^1(\Omega)$ and $L^1(\Gamma_1)$, respectively. We define a notion of renormalized solution and we prove the existence of a solution. Under additional assumptions on the matrix field B we show that the renormalized solution is unique.

Key words elliptic equations; renormalized solution; uniqueness; Robin boundary conditions; L^1 data

2010 MR Subject Classification 35J66; 35A01; 35A02; 35R05

1 Introduction

This paper is devoted to the class of nonlinear equations of the type

$$
\begin{cases}\n-\operatorname{div}(B(x,u)\nabla u) = f & \text{in } \Omega, \\
u = 0 & \text{on } \Gamma_0, \\
B(x,u)\nabla u \cdot \vec{n} + \gamma(x)h(u) = g & \text{on } \Gamma_1.\n\end{cases}
$$
\n(1.1)

Here Ω is a perforated domain of \mathbb{R}^N $(N \geq 2)$, the matrix field $B(x, s)$ is coercive but does not verify any growth condition with respect to the second variable and f belongs to $L^1(\Omega)$. We impose Dirichlet boundary conditions on Γ_0 which is the outside boundary of Ω and nonlinear and nonhomogeneous Robin conditions on Γ_1 which is the boundary of the holes. Moreover the

[∗]Received December 28, 2015; revised October 26, 2016.

[†]Corresponding Author: Olivier GUIBE´

function g belongs to $L^1(\Gamma_1)$, γ is a nonnegative function lying in $L^{\infty}(\Gamma_1)$, h is a nondecreasing continuous function such that $h(0) = 0$ and \vec{n} is the outer unit normal to $\partial\Omega$.

The main difficulties in dealing with the existence and the uniqueness of the solution to (1.1) are due to the L^1 data f and g, the fact that $B(x, s)$ and $h(s)$ do not verify any growth condition with respect to s and the Robin boundary condition on Γ_1 that requires a specific notion of trace on Γ_1 . Problem (1.1) is motivated by the homogenization in a periodically perforated domain.

When f belongs to $L^2(\Omega)$, g belongs to $L^2(\Gamma_1)$ and under some growth conditions on the function h, the existence and uniqueness of a weak solution to (1.1) were studied in [9] and the homogenization of (1.1) with oscillating coefficients in a periodically perforated domain was performed in [10].

When the data f and g belong to $L^1(\Omega)$ and $L^1(\Gamma_1)$, respectively, it is well known that we cannot use the notion of weak solution. Indeed if $B(x, s)$ and $h(s)$ are bounded functions we can expect to have a solution in the sense of distribution by adapting the method of [6] but we do not have in general the uniqueness of such a solution (see the counterexample in [24]). Without any growth condition on B and h we cannot expect to have a solution in the sense of distribution, the field $B(x, u)$ could not belong to $L^1_{loc}(\Omega)$ for example. In the present paper we use the framework of renormalized solutions. This notion was introduced by DiPerna and Lions in [16] for the first order equations and has been developed for elliptic problems with Dirichlet boundary conditions (i.e., $\Gamma_1 = \emptyset$) and with $L^1(\Omega)$ data in [20] (see also [19]). In [13] the authors gave a definition of a renormalized solution for elliptic problems with general measure data and proved the existence of such a solution. Observe that for elliptic equations with boundary Dirichlet conditions and L^1 data, this notion is equivalent to the notion of entropy solutions (see [4]) and to the notion of solutions obtained as limit of approximations (see [14]). As far as elliptic equations with L^1 data and Dirichlet boundary conditions are concerned we refer to $\left[4, 6, 13, 14, 19, 20\right]$ among a wide literature.

Similar equations to (1.1) with Neumann boundary conditions or Robin boundary conditions were studied in [1, 2, 8, 21, 23] using the framework of entropy solution while in [17] the author used a duality method for linear problems with Neumann and Robin boundary conditions. In particular in [1] (see also [2]) the authors studied the equation

$$
\begin{cases}\n u - \operatorname{div}(a(x, \nabla u)) = f & \text{in } \Omega, \\
 -a(x, \nabla u) \cdot \vec{n} \in \beta(u) & \text{on } \partial\Omega,\n\end{cases}
$$

where f belongs to $L^1(\Omega)$ and where β is a maximal monotone graph. Using the notion of entropy solution and by defining an appropriate notion of trace (since we cannot expect to have u in a Sobolev space), they prove the existence and the uniqueness of the entropy solution.

In the present paper we give a definition of renormalized solution for equation (1.1) (see Definition 2.6). Since Robin condition requires the trace of u on the boundary Γ_1 in same spirit than [1], we define a notion of trace for functions whose truncates belong to $H_{\Gamma_0}^1$ and verify an additional property. We prove the existence of a renormalized solution of problem (1.1) in Theorem 3.1 under general assumption on B and h. Another interesting question is the uniqueness of such a renormalized solution. Here the operator $u \mapsto -\text{div}(B(x, u)\nabla u)$ is not monotone and it is worth noting that equation (1.1) does not contain any local term in u Download English Version:

<https://daneshyari.com/en/article/8904503>

Download Persian Version:

<https://daneshyari.com/article/8904503>

[Daneshyari.com](https://daneshyari.com)