

Available online at www.sciencedirect.com

http://actams.wipm.ac.cn

OUTER OPERATORS FOR THE NONCOMMUTATIVE SYMMETRIC HARDY SPACES ASSOCIATED WITH FINITE SUBDIAGONAL ALGEBRA*

Kanat S. TULENOV

Institute of Mathematics and Mathematical Modeling, Almaty 050010, Kazakhstan E-mail: kanat.tulenov@gmail.com

Madi RAIKHAN

L.N.Gumilyov Eurasian National University, Astana 010010, Kazakhstan E-mail: mady1029@yandex.kz

Abstract In this article, we extended main results on outer operators of [6] to the symmetric Hardy spaces, when associated subdiagonal algebra is finite.

Key words Subdiagonal algebra; noncommutative symmetric Hardy space; inner-outer operators; finite von Neumann algebra

2010 MR Subject Classification 46L51; 46L52; 46J15

1 Introduction

Let \mathcal{M} be a finite von Neumann algebra with a faithful normal tracial state τ . In [1], Arveson introduced the notion of finite, maximal, subdiagonal algebras \mathcal{A} of \mathcal{M} , as noncommutative analogues of weak^{*}- Dirichlet algebras. Subsequently, several authors studied the (non-commutative) H^p -spaces associated with such algebras(see [16]). Blecher and Labuschagne [5] studied outer operators in $H^p(\mathcal{A})$, $1 \leq p < \infty$ (for the case 0 , see [2]). In [6], theauthors extend their generalized inner-outer factorization theorem in [5] and establish characterizations of outers that are valid even in the case of elements with zero determinant. Someof these results are proved in [19] for the case <math>0 .

In this article, we will extend main results on outer operators in [6] to the symmetric case, which can be considered as a complement to the work in [6] (also see [19]).

Section 1 contains some preliminary definitions. In Section 2, we extend the main results of [6] to the symmetric spaces case.

^{*}Received February 24, 2016; revised September 19, 2016. The first author was supported by grant 0085/PTsF-14 and the second author was supported by project 3606/GF4 of Science Committee of Ministry of Education and Science of Republic of Kazakhstan.

2 Preliminaries

Throughout this article, we denote by \mathcal{M} a finite von Neumann algebra on a Hilbert space \mathcal{H} with a faithful normal tracial state τ . The closed densely defined linear operator x in \mathcal{H} with domain D(x) is said to be affiliated with \mathcal{M} if and only if $u^*xu = x$ for all unitary operators u which belong to the commutant \mathcal{M}' of \mathcal{M} . If x is affiliated with \mathcal{M} , then x is said to be τ -measurable if for every $\varepsilon > 0$, there exists a projection $e \in \mathcal{M}$ such that $e(H) \subseteq D(x)$ and $\tau(e^{\perp}) < \varepsilon$, where $e^{\perp} = 1 - e$. The set of all τ -measurable operators will be denoted by $L_0(\mathcal{M}; \tau)$ or simply by $L_0(\mathcal{M})$. The set $L_0(\mathcal{M})$ is a *-algebra with sum and product to be the respective closure of the algebraic sum and product [15].

The measure topology t_{τ} in $L_0(\mathcal{M})$ is given by the system of neighborhoods of zero

$$V(\varepsilon,\delta) = \{x \in L_0(\mathcal{M}) : \|xe\|_{\infty} \le \delta \text{ for some pojection } e \in \mathcal{M} \text{ with } \tau(e^{\perp}) \le \varepsilon\},\$$

 $\varepsilon > 0, \delta > 0.$

For each x on \mathcal{H} affiliated with \mathcal{M} , all spectral projection $e_s^{\perp}(|x|) = \chi_{(s;\infty)}(|x|)$ corresponding to the interval $(s;\infty)$ belong to \mathcal{M} , and $x \in L_0(\mathcal{M})$ if and only if $\chi_{(s;\infty)}(|x|) < \infty$ for some $s \in \mathbb{R}$. Recall the definition of the decreasing rearrangement (or generalized singular numbers) of an operator $x \in L_0(\mathcal{M})$: for t > 0,

$$\mu_t(x) = \inf\{s > 0 : \lambda_s(x) \le t\}, t > 0$$

where

$$\lambda_s(x) = \tau(e_s^{\perp}(|x|)); s > 0$$

The function $s \mapsto \lambda_s(x)$ is called the distribution function of x. For more details on generalized singular value function of measurable operators, we refer to [10].

Now, we recall the definition of a symmetric operator space $E(\mathcal{M}; \tau)$ build up with respect to a noncommutative measure space (\mathcal{M}, τ) and a symmetric Banach function space (see [12]). Let (Ω, Σ, μ) be a complete σ -finite measure space and $L_0(\Omega)$ be the space of all classes of μ measurable real-valued functions defined on Ω . A quasi Banach space $E = (E, \|\cdot\|_E)$ is said to be a quasi Banach ideal space on Ω if E is a linear subspace of $L_0(\Omega)$ and satisfies the so-called ideal property, which means that if $y \in E$, $x \in L_0(\Omega)$, and |x(t)| = |y(t)| for μ -almost all $t \in \Omega$, then $x \in E$ and $||x||_E = ||y||_E$. By a symmetric quasi Banach space on [0; 1], we mean a quasi Banach lattice E of measurable functions on [0; 1] satisfying the following properties:

(i) E contains all simple functions;

(ii) If $x \in E$ and y is measurable function such that |y| is equidistributed with |x|, then $y \in E$ and $||x||_E = ||y||_E$. For convience, we shall always assume that E additionally satisfies

$$0 \le x_n \uparrow x, x_n, x \in E \Rightarrow ||x_n||_E \uparrow ||x||_E$$

We say that E has order continuous (quasi)-norm if for every net $(x_i)_{i \in I}$ in E such that $x_i \downarrow 0$, we have $||x_i||_E \downarrow 0$. The space E is called fully symmetric if, in addition, for $x \in L_0[0;1]$ and $y \in E$ with $x \prec \prec y$ implies that $x \in E$ and $||x||_E \leq ||y||_E$; here $x \prec \prec y$ as usual denotes the submajorization in the sense of Hardy-Littlewood-Polya: for all t > 0,

$$\int_0^t \mu_s(x) \mathrm{d}s \le \int_0^t \mu_s(y) \mathrm{d}s.$$

Download English Version:

https://daneshyari.com/en/article/8904539

Download Persian Version:

https://daneshyari.com/article/8904539

Daneshyari.com