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Abstract In this article, we study the 1-dimensional bipolar quantum hydrodynamic model

for semiconductors in the form of Euler-Poisson equations, which contains dispersive terms

with third order derivations. We deal with this kind of model in one dimensional case for

general perturbations by constructing some correction functions to delete the gaps between

the original solutions and the diffusion waves in L2-space, and by using a key inequality

we prove the stability of diffusion waves. As the same time, the convergence rates are also

obtained.
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1 Introduction

In this article, we study the isentropic Euler-Poisson equations for the bipolar quantum

hydrodynamical model of semiconductor device,
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for x ∈ R, t ∈ R
+. Here, n1, n2, J1, J2, and E represent the electron density, the hole density,

the electron velocity, the hole velocity, and the electric field, respectively. τ1 and τ2 denote

the relaxation time of electron and hole, respectively. As we are interested in the large time

behavior, we assume τ1 = τ2 = τ ≤ 1. The nonlinear functions p(s) denote the pressures of the

electrons and the holes, respectively, which are smooth, strictly increasing, and nonnegative,

that is,

p(s) ≥ 0, p′(s) > 0 for s > 0. (1.2)

Quantum hydrodynamic models of semiconductor equations was investigated by many peo-

ple for both unipolar and bipolar situations. Especially, for unipolar hydrodynamic models,

there exist rich results, such as well-posedness of steady-state solutions in [4, 7, 8], and their

stability in [11, 14, 21, 26, 30, 44], the golbal existence of classical and/or the entropy weak

solutions in [2, 27, 34, 45, 49], the large time behavior of solutions in [14, 26, 28], and the

zero relaxation limit problems in [1, 10, 15], and so on. However, the study for bipolar hydro-

dynamic semiconductor equations is quite limited. In 1-D case, Natalini [40], and Hsiao and

Zhang [15, 16] established the global entropic weak solutions in the framework of compensated

compactness on the whole real line and spatial bounded domain, respectively. Hattori and

Zhu [51] proved the stability of steady-state solutions for a recombined bipolar hydrodynamic

model. Gasser, Hsiao, and H. Li [9], and Huang and Y. Li [18] investigated the large time

behavior of both small smooth and weak solutions, respectively. Furthermore, Y. Li [29] stud-

ied the relaxation limit of a bipolar isentropic hydrodynamic models for semiconductors with

small momentum relaxation time. In n-D case, F. Huang, M. Mei, and Y. Wang [21] proved

the stability of planar diffusion waves recently.

Physically, the frictional damping usually causes the dynamical system to possess the non-

linear diffusive phenomena. Such interesting phenomena for 1-D compressible Euler equations

with damping was investigated firstly by Hsiao and Liu [12]. Since then, this problem has

attracted considerable attention; for example, see [21, 33, 38, 41–43, 48, 50] and the references

therein.

For system (1.1) without the nonlinear dispersive terms of third order derivations, Gasser,

Hsiao, and H. Li [9] and Huang, and Y. Li [18] investigated the large time behavior of both small

smooth and weak solutions when the difference between the initial electron mass and the initial

hole mass is zero. Later, removing the need of the difference between the initial electron mass

and the initial hole mass to be zero, F. Huang, M. Mei, and Y. Wang [21] proved the stability

of planar diffusion waves in n-D case. In this article, our main interesting is to investigate the

large time behavior of the Euler-Poisson equations (1.1) when the initial electron mass and

the initial hole mass are nonzero, which contains dispersive terms with third order derivations.

Under this situation, there exist some particular difficults. First, the correction functions used

in [9] cannot be applied anymore because of the effect of the electric field. Second, the strategy

of antiderivative used in [9, 21] (in 1-D case) cannot be directly used in our case because of the

appearance of the high order terms. To overcome these difficulties, we first apply the correction

functions used in [21], then establish a basic estimate, and later combine the antiderivative

strategy with a technical inequality, which was contributed by Huang, Li, and Matsumura [17],

to obtain the energy estimates.
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