THE LARGEST EIGENVALUE DISTRIBUTION OF THE LAGUERRE UNITARY ENSEMBLE＊

Shulin LYU ${ }^{\dagger}$
Department of Mathematics，University of Macau，Avenida da Universidade，Taipa，Macau，China
E－mail：lvshulin1989＠163．com
Yang CHEN
Department of Mathematics，University of Macau，Avenida da Universidade，Taipa，Macau，China E－mail：yangbrookchen＠yahoo．co．uk

Abstract

We study the probability that all eigenvalues of the Laguerre unitary ensemble of n by n matrices are in $(0, t)$ ，that is，the largest eigenvalue distribution．Associated with this probability，in the ladder operator approach for orthogonal polynomials，there are recurrence coefficients，namely，$\alpha_{n}(t)$ and $\beta_{n}(t)$ ，as well as three auxiliary quantities，denoted by $r_{n}(t), R_{n}(t)$ ，and $\sigma_{n}(t)$ ．We establish the second order differential equations for both $\beta_{n}(t)$ and $r_{n}(t)$ ．By investigating the soft edge scaling limit when $\alpha=O(n)$ as $n \rightarrow \infty$ or α is finite，we derive a $P_{I I}$ ，the σ－form，and the asymptotic solution of the probability．In addition，we develop differential equations for orthogonal polynomials $P_{n}(z)$ corresponding to the largest eigenvalue distribution of LUE and GUE with n finite or large．For large n ， asymptotic formulas are given near the singular points of the ODE．Moreover，we are able to deduce a particular case of Chazy＇s equation for $\varrho(t)=\Xi^{\prime}(t)$ with $\Xi(t)$ satisfying the σ－form of $P_{I V}$ or P_{V} ．

Key words Orthogonal polynomials；Painlevé equations；differential equations
2010 MR Subject Classification 33C45；34M55

1 Introduction

A unitary ensemble is well defined for Hermitian matrices $M=\left(M_{i j}\right)_{n \times n}$ with probability density

$$
\begin{equation*}
p(M) d M \propto e^{-\operatorname{tr} v(M)} \operatorname{vol}(d M), \quad \operatorname{vol}(d M)=\prod_{i=1}^{n} d M_{i i} \prod_{1 \leq j<k \leq n} d\left(\operatorname{Re} M_{j k}\right) d\left(\operatorname{Im} M_{j k}\right) \tag{1.1}
\end{equation*}
$$

Here，$v(M)$ is a matrix function［1］defined via Jordan canonical form and $\operatorname{vol}(d M)$ is called the volume element［2］．The joint probability density function of the eigenvalues $\left\{x_{j}\right\}_{j=1}^{n}$ of this unitary ensemble is given in［3］by

$$
\begin{equation*}
\frac{1}{D_{n}(a, b)} \frac{1}{n!} \prod_{1 \leq j<k \leq n}\left|x_{k}-x_{j}\right|^{2} \prod_{j=1}^{n} w\left(x_{j}\right) \tag{1.2a}
\end{equation*}
$$

[^0]where $D_{n}(a, b)$ is the normalization constant which reads
\[

$$
\begin{equation*}
D_{n}(a, b)=\frac{1}{n!} \int_{[a, b]^{n}} \prod_{1 \leq j<k \leq n}\left|x_{k}-x_{j}\right|^{2} \prod_{j=1}^{n} w\left(x_{j}\right) \mathrm{d} x_{j} \tag{1.2b}
\end{equation*}
$$

\]

and $w(x)=e^{-v(x)}$ is a positive weight function supported on $[a, b]$ with finite moments

$$
\mu_{k}:=\int_{a}^{b} x^{k} w(x) \mathrm{d} x, \quad k=0,1,2, \cdots
$$

It is shown, in [3], that $D_{n}(a, b)$ can be evaluated as the determinant of the Hankel (or moment) matrix, that is,

$$
D_{n}(a, b)=\operatorname{det}\left(\mu_{i+j}\right)_{i, j=0}^{n-1}
$$

A unitary ensemble is called the Laguerre unitary ensemble (LUE) if in (1.1),

$$
v(x)=x-\alpha \ln x
$$

or, what amounts to the same thing, in (1.2),

$$
w(x)=x^{\alpha} e^{-x}, \quad x \in[0, \infty), \quad \alpha>0
$$

A special case of LUE is $M=X X^{*}$ and $\alpha=p-n$, where $X=X_{1}+\mathrm{i} X_{2}$ is an $n \times p(n \leq p)$ random matrix with each element of X_{1} and X_{2} chosen independently as a Gaussian random variable; see [4-7].

Denote by $\mathbb{P}(n, t)$ the probability that the largest eigenvalue in LUE is not larger than t, then

$$
\mathbb{P}(n, t)=\frac{D_{n}(t)}{D_{n}(0, \infty)}
$$

where $D_{n}(t):=D_{n}(0, t)$. Tracy and Widom [8] obtained the Jimbo-Miwa-Okamoto (J-M-O) σ-form $[9,10]$ of P_{V} for

$$
\sigma_{n}(t):=t \frac{\mathrm{~d}}{\mathrm{~d} t} \ln \mathbb{P}(n, t)
$$

using the Fredholm determinant. Basor and Chen [11] derived the same σ-form by studying the Hankel determinant $D_{n}(t)$ with the help of the ladder operators related to orthogonal polynomials. In their work, another four quantities associated with $\mathbb{P}(n, t)$ are considered, that is, $\alpha_{n}(t), \beta_{n}(t), r_{n}(t)$, and $R_{n}(t)$, and the relationships between them are established. In addition, a P_{V} is derived for $R_{n}(t)$ (or $\alpha_{n}(t)$). By these results, in this article we obtain the second order differential equation for $\beta_{n}(t)$ as well as $r_{n}(t)$.

The soft edge scaling limit of the smallest eigenvlue distribution on (t, ∞) in LUE with $\alpha=\mu n=O(n)$ and $t=(\sqrt{\mu+1}-1)^{2} n-\frac{(\sqrt{\mu+1}-1)^{4 / 3}}{(\mu+1)^{1 / 6}} n^{1 / 3} s$ is analyzed in [12]. Concerning the largest eigenvalue distribution, we show that for $\alpha=O(n)$ or finite, and

$$
t=c_{1} n+c_{2} n^{1 / 3} s, \quad \sigma(s):=\frac{c_{2}}{c_{1}} \lim _{n \rightarrow \infty} n^{-2 / 3} \sigma_{n}(t)
$$

where

$$
c_{1}=(\sqrt{\mu+1}+1)^{2}, \quad c_{2}=\frac{(\sqrt{\mu+1}+1)^{4 / 3}}{(\mu+1)^{1 / 6}}, \quad \mu= \begin{cases}\frac{\alpha}{n}, & \alpha=O(n) \\ 0, & \alpha \text { is finite }\end{cases}
$$

the σ-form of P_{V} satisfied by $\sigma_{n}(t)$ is reduced down to the σ-form of $P_{I I}$, which agrees with the result of [12]. The P_{V}, the ODEs for $\beta_{n}(t)$ and $r_{n}(t)$, can likewise be reduced to a $P_{I I}$.

https://daneshyari.com/en/article/8904555

Download Persian Version:

https://daneshyari.com/article/8904555

Daneshyari.com

[^0]: ＊Received November 6， 2015.
 ${ }^{\dagger}$ Corresponding author

