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Abstract We consider the vibration of elastic thin plates under certain reasonable assump-

tions. We derive the nonlinear equations for this model by the Hamilton Principle. Under

the conditions on the hyperbolicity for the initial data, we establish the local time well-

posedness for the initial and boundary value problem by Picard iteration scheme, and obtain

the estimates for the solutions.
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1 Introduction

In this article, we are concerned with the vibrations of elastic thin plates. This problem

has been widely studied from the last century. In particular, there are a lot of works includ-

ing theoretical analysis and numerical simulation on gyro linear models, and most of them are

confirmed to be effective. However, some phenomenons can not be explained by these models,

such as the self-excited vibration, harmonic resonance, ultra-harmonic resonance and so on.

Recently, many systematic investigations were developed on the nonlinear analysis of the vibra-

tion. Wickert [7, 8] initially derived the equations for axial vibration by the Hamilton principle,

and also adapted the method of KBM to discuss the nonlinear stability and bifurcation theory

of the vibration for girder motions. Meanwhile, the method of multi-scaling was used by Riedel

in [4] to analyze the asymptotic behavior of the axial vibration. Chen [1, 2] employed the in-

cremental harmonic balance method (IHB) to explore the characteristic of nonlinear dynamics;

the further references can be found in [1–3] and the references therein.
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Our motivation is to take both lateral and longitudinal vibrations of the motion mechanism

of elastic thin plates into consideration. By the Hamilton variation principle, the system can

be formulated by
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∂x1∂x2
= 0, t > 0, x = (x1, x2) ∈ Ω, (1.1)

where U = (u, v, w), u, v, and w stand for the horizontal, vertical and longitudinal replacements

of the plates, respectively. Ai(U) (i = 1, 2, 3) is the symmetric matrix defined later. Ω is a

bounded domain with smooth boundary in R
2.

The initial and boundary data are given by






U |t=0 = U0(x1, x2), Ut|t=0 = U1(x1, x2),

U |∂Ω = g(t, x1, x2).
(1.2)

Note the fact that almost all the physical vibrations have finite speed of propagation, which

implies that equations (1.1) should be hyperbolic at least in the state space. Actually, we will

confirm it under the following assumption:

(A1) Assume that ν ∈ (0, 1) is Poisson’s ratio. Denote d = 1+ν
1−ν and λ = d−1

2(d+1) . Suppose

that (u, v, w) satisfies the inequalities

|ux1| ≤ λ(wx1 )
2, |vx2 | ≤ λ(wx2 )

2, |ux2 | + |vx1 | ≤ λ|wx1 ||wx2 |, and |wx1wx2 | 6= 0.

Then, the main results of this article can be given by

Theorem 1.1 Assume that the initial and boundary data are s-th compatibility for some

integer s > 3, and that the hyperbolic condition (A1) holds for U0 and U1, where

U0 ∈ Hs+1, U1 ∈ Hs and g ∈ Hs+1([0, T ]; ∂Ω).

Then, there exists a positive constant T > 0 depending on the initial data such that (1.1)–(1.2)

admits a unique solution U satisfying

||U ||L∞([0,T ]; Hs) + ||Ut||L∞([0,T ]; Hs−1) ≤ C(||U0||Hs+1 + ||U1||Hs + ‖g‖Hs+1([0,T ]; ∂Ω)), (1.3)

where C is a positive constant, depending on ‖U0‖Hs+1 , ‖U1‖Hs , and ‖g‖Hs+1([0,T ]; ∂Ω)) .

This article can be organized as follows. In Section 2, we derive the equations for the

vibration of the thin plates by Hamilton principle. Section 3 is contributed to constructing the

approximate solution by Picard iteration scheme and concludes this article with the proof of

Theorem 1.1.

2 The Derivation of Equations for the Vibration of Thin Plates

In this section, we apply the Hamilton principle to derive the mathematical model for the

vibration of thin plates. For simplicity, we will consider it under the the following assumptions:

(A2) The Kirchhoff thickness of the thin plates is negligible, and the area density is a

positive constant, and without loss of generality, let ρ = 1.

(A3) The plates have very well-flexible scalability, and the bending rigidity is not neglected.

(A4) The vibration of the plates satisfies the Kirchhoff theory, which means that the

longitudinal vibration is still perpendicular to the plates.
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