SOME PROPERTIES FOR CERTAIN CLASSES OF UNIVALENT FUNCTIONS DEFINED BY DIFFERENTIAL INEQUALITIES＊

Zhigang PENG（彭志刚）Gangzhen ZHONG（钟广祯）
Faculty of Mathematics and Statistics，Hubei University，Wuhan 430062，China
E－mail：pengzhigang＠hubu．edu．cn；Zachery626＠163．com

Abstract Let \mathcal{A} be the space of functions analytic in the unit disk $D=\{z:|z|<1\}$ ．Let \mathcal{U} denote the set of all functions $f \in \mathcal{A}$ satisfying the conditions $f(0)=f^{\prime}(0)-1=0$ and

$$
\left|f^{\prime}(z)\left(\frac{z}{f(z)}\right)^{2}-1\right|<1 \quad(|z|<1) .
$$

Also，let Ω denote the set of all functions $f \in \mathcal{A}$ satisfying the conditions $f(0)=f^{\prime}(0)-1=0$ and

$$
\left|z f^{\prime}(z)-f(z)\right|<\frac{1}{2} \quad(|z|<1) .
$$

In this article，we discuss the properties of \mathcal{U} and Ω ．
Key words univalent function；Starlike function；Hadamard product；extreme point；sup－ port point

2010 MR Subject Classification 30C45；30C75；30C80

1 Introduction

Let \mathcal{A} be the space of functions analytic in the unit disk $D=\{z:|z|<1\}$ ．Endowed with the topology of uniform convergence on compact subsets of the unit disk， \mathcal{A} is a locally convex topological vector space．Let \mathcal{B} be the subset of \mathcal{A} which consists of $\phi \in \mathcal{A}$ with $|\phi(z)| \leq 1(|z|<1)$ ．Suppose that \mathcal{F} is a compact subset of \mathcal{A} ．A function f is called a support point of \mathcal{F} if $f \in \mathcal{F}$ and there is a continuous linear functional J on \mathcal{A} such that $\operatorname{Re} J$ is non－constant on \mathcal{F} and

$$
\operatorname{Re} J(f)=\max \{\operatorname{Re} J(g): g \in \mathcal{F}\}
$$

The set of all support points of \mathcal{F} is denoted by $\operatorname{supp} \mathcal{F}$ ．An element $f \in \mathcal{F}$ is called an extreme point of \mathcal{F} if it is not a proper convex combination of any two distinct points in \mathcal{F} ．The set of extreme points of \mathcal{F} is denoted by $\mathrm{E} \mathcal{F}$ ．In recent decades the extreme points and support points of many classes of analytic functions were studied（see［1－12］）．

[^0]Let S be the subset of \mathcal{A} consisting of functions f that are univalent in D and satisfy $f(0)=f^{\prime}(0)-1=0$. A function $f \in S$ is called starlike if $f(D)$ is starlike with respect to the origin. The class of all starlike functions is denoted by S^{*}. A function $f \in S^{*}$ if and only if

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>0 \quad(|z|<1)
$$

A function $f \in S$ is called convex if $f(D)$ is a convex set. The class of all convex functions is denoted by K. A function $f \in K$ if and only if

$$
\operatorname{Re}\left[1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right]>0 \quad(|z|<1)
$$

In recent years, many scholars were still interested in studying the properties of various subclasses of univalent functions (see [13-20]).

Let \mathcal{U} denote the set of all functions $f \in \mathcal{A}$ satisfying the conditions $f(0)=f^{\prime}(0)-1=0$ and

$$
\begin{equation*}
\left|f^{\prime}(z)\left(\frac{z}{f(z)}\right)^{2}-1\right|<1 \quad(z \in D) \tag{1.1}
\end{equation*}
$$

Let $h(z)=\frac{z}{f(z)}-1$. It is easy to show that $f \in \mathcal{U}$ if and only if

$$
\begin{equation*}
z h^{\prime}(z)-h(z)=z^{2} \phi(z) \tag{1.2}
\end{equation*}
$$

where $\phi \in \mathcal{B}$, that is, ϕ is analytic in D and $|\phi(z)| \leq 1$ for all $z \in D$. It is well known that the functions in \mathcal{U} are univalent [15]. Up to now, the class \mathcal{U} were studied in detail for many years (see $[16-20]$). In the second part of this paper, we further study the class \mathcal{U}, and meanwhile, we want to study the univalence of the function $h(z)$ which is a solution of the differential equation (1.2). For this purpose, we define a new class Ω which consists of functions $f \in \mathcal{A}$ satisfying the conditions $f(0)=f^{\prime}(0)-1=0$ and

$$
\begin{equation*}
\left|z f^{\prime}(z)-f(z)\right|<\frac{1}{2} \quad(z \in D) \tag{1.3}
\end{equation*}
$$

It is clear that inequality (1.3) is equivalent to the equation

$$
\begin{equation*}
z f^{\prime}(z)-f(z)=\frac{1}{2} z^{2} \phi(z) \tag{1.4}
\end{equation*}
$$

where $\phi \in \mathcal{B}$. In the third part of this article, we focus on the properties of the class Ω such as univalence, radius of convexity, Hadamard product, extreme and support points. At last, we put forward a question to end this article.

Now, we state our main results.

2 The Property of the Class \mathcal{U}

Theorem 2.1 If $f, g \in \mathcal{U}, 0 \leq t \leq 1$, then

$$
\frac{f g}{(1-t) f+t g} \in \mathcal{U}
$$

Proof Since $f, g \in \mathcal{U}$, we conclude from (1.2) that

$$
\begin{equation*}
z\left[\frac{z}{f(z)}-1\right]^{\prime}-\left[\frac{z}{f(z)}-1\right]=z^{2} \varphi(z) \tag{2.1}
\end{equation*}
$$

https://daneshyari.com/en/article/8904569

Download Persian Version:

https://daneshyari.com/article/8904569

Daneshyari.com

[^0]: ＊Received November 6，2015；revised March 18，2016．Supported by the Key Laboratory of Applied Mathematics in Hubei Province，China．

