

http://actams.wipm.ac.cn

SOME PROPERTIES FOR CERTAIN CLASSES OF UNIVALENT FUNCTIONS DEFINED BY DIFFERENTIAL INEQUALITIES*

Zhigang PENG (彭志刚) Gangzhen ZHONG (钟广祯)

Faculty of Mathematics and Statistics, Hubei University, Wuhan 430062, China E-mail: pengzhigang@hubu.edu.cn; Zachery626@163.com

Abstract Let \mathcal{A} be the space of functions analytic in the unit disk $D = \{z : |z| < 1\}$. Let \mathcal{U} denote the set of all functions $f \in \mathcal{A}$ satisfying the conditions f(0) = f'(0) - 1 = 0 and

$$\left|f'(z)(\frac{z}{f(z)})^2 - 1\right| < 1 \ (|z| < 1).$$

Also, let Ω denote the set of all functions $f \in \mathcal{A}$ satisfying the conditions f(0) = f'(0) - 1 = 0and

$$|zf'(z) - f(z)| < \frac{1}{2} \quad (|z| < 1).$$

In this article, we discuss the properties of \mathcal{U} and Ω .

Key words univalent function; Starlike function; Hadamard product; extreme point; support point

2010 MR Subject Classification 30C45; 30C75; 30C80

1 Introduction

Let \mathcal{A} be the space of functions analytic in the unit disk $D = \{z : |z| < 1\}$. Endowed with the topology of uniform convergence on compact subsets of the unit disk, \mathcal{A} is a locally convex topological vector space. Let \mathcal{B} be the subset of \mathcal{A} which consists of $\phi \in \mathcal{A}$ with $|\phi(z)| \leq 1$ (|z| < 1). Suppose that \mathcal{F} is a compact subset of \mathcal{A} . A function f is called a support point of \mathcal{F} if $f \in \mathcal{F}$ and there is a continuous linear functional J on \mathcal{A} such that $\operatorname{Re} J$ is non-constant on \mathcal{F} and

$$\operatorname{Re}J(f) = \max\{\operatorname{Re}J(g) : g \in \mathcal{F}\}.$$

The set of all support points of \mathcal{F} is denoted by $\operatorname{supp}\mathcal{F}$. An element $f \in \mathcal{F}$ is called an extreme point of \mathcal{F} if it is not a proper convex combination of any two distinct points in \mathcal{F} . The set of extreme points of \mathcal{F} is denoted by \mathcal{EF} . In recent decades the extreme points and support points of many classes of analytic functions were studied (see [1–12]).

^{*}Received November 6, 2015; revised March 18, 2016. Supported by the Key Laboratory of Applied Mathematics in Hubei Province, China.

Let S be the subset of \mathcal{A} consisting of functions f that are univalent in D and satisfy f(0) = f'(0) - 1 = 0. A function $f \in S$ is called starlike if f(D) is starlike with respect to the origin. The class of all starlike functions is denoted by S^* . A function $f \in S^*$ if and only if

$$\operatorname{Re}\frac{zf'(z)}{f(z)} > 0 \quad (|z| < 1).$$

A function $f \in S$ is called convex if f(D) is a convex set. The class of all convex functions is denoted by K. A function $f \in K$ if and only if

$$\operatorname{Re}\left[1 + \frac{zf''(z)}{f'(z)}\right] > 0 \quad (|z| < 1).$$

In recent years, many scholars were still interested in studying the properties of various subclasses of univalent functions (see [13–20]).

Let \mathcal{U} denote the set of all functions $f \in \mathcal{A}$ satisfying the conditions f(0) = f'(0) - 1 = 0and

$$\left| f'(z)(\frac{z}{f(z)})^2 - 1 \right| < 1 \quad (z \in D).$$
(1.1)

Let $h(z) = \frac{z}{f(z)} - 1$. It is easy to show that $f \in \mathcal{U}$ if and only if

$$zh'(z) - h(z) = z^2 \phi(z),$$
 (1.2)

where $\phi \in \mathcal{B}$, that is, ϕ is analytic in D and $|\phi(z)| \leq 1$ for all $z \in D$. It is well known that the functions in \mathcal{U} are univalent [15]. Up to now, the class \mathcal{U} were studied in detail for many years (see [16–20]). In the second part of this paper, we further study the class \mathcal{U} , and meanwhile, we want to study the univalence of the function h(z) which is a solution of the differential equation (1.2). For this purpose, we define a new class Ω which consists of functions $f \in \mathcal{A}$ satisfying the conditions f(0) = f'(0) - 1 = 0 and

$$|zf'(z) - f(z)| < \frac{1}{2} \quad (z \in D).$$
 (1.3)

It is clear that inequality (1.3) is equivalent to the equation

$$zf'(z) - f(z) = \frac{1}{2}z^2\phi(z),$$
(1.4)

where $\phi \in \mathcal{B}$. In the third part of this article, we focus on the properties of the class Ω such as univalence, radius of convexity, Hadamard product, extreme and support points. At last, we put forward a question to end this article.

Now, we state our main results.

2 The Property of the Class \mathcal{U}

Theorem 2.1 If $f, g \in \mathcal{U}, 0 \le t \le 1$, then

$$\frac{fg}{(1-t)f+tg} \in \mathcal{U}.$$

Proof Since $f, g \in \mathcal{U}$, we conclude from (1.2) that

$$z\left[\frac{z}{f(z)} - 1\right]' - \left[\frac{z}{f(z)} - 1\right] = z^2\varphi(z)$$
(2.1)

Download English Version:

https://daneshyari.com/en/article/8904569

Download Persian Version:

https://daneshyari.com/article/8904569

Daneshyari.com