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Abstract The article investigates the growth of multiple Dirichlet series. The lower order
and the linear order of n-tuple Dirichlet series in C" are defined and some relations between

them and the coefficients and exponents of n-tuple Dirichlet series are obtained.
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1 Introduction

N-tuple Dirichet series is a function with the following form
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where for every j € {1,2,--- ,n},0< {/\5%3} 1 400, 85 =0j +irj,05, 75 €ER(G=1,2,---,n).

In order to simplify the form of n-tuple Dirichlet Series, we denote S = (s1,82, - ,8,) €
Cmym = (my,ma, - ,mn) € N7 A, (/\5,112,/\5,212,--- MY e R and ApS = (A2, A2
)\( )) (81,82, ,8p) = /\(1) 51 + )\(2) So 4o+ /\523 s,,. The n-tuple Dirichlet series can also be
denoted by
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If {S,,(S)} is bounded for a group of complex numbers (s1, 82, ,8,) in C™ and the limit
m S, (5)
‘7:1{2,~~ n

exists, then we say that series (1.1) is boundedly convergent for the group of numbers, and the
limit is called as the sum of series (1.1). If {S,, (o1, + i71, 02, + T2, ,0pn, + iT0)}(m € N)
converges uniformly with respect to —oo < 7; < 00 (j =1,2,---,n), and the limit

lim Sm(01, + 171,09, + 172, ,Opy + i71)
m—00

exists uniformly with respect to —oo < 7; < 00 (j =1,2,---,n), then we say that series (1.1)

is uniformly and boundedly convergent on (o1 = 01,,02 = 09y, ,0n = Op,). And if the limit
li a5
Lm > lage™?]
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exists for a group of complex numbers (s1, $2, - , S, ), then we say that series (1.1) is absolutely
convergent for the group of numbers. Series (1.1) has grouped relative boundedly convergent
abscissas (01,,02,, " ,0n,), grouped relative uniformly and boundedly convergent abscissas
(01,,02,, " ,0n,), and grouped relative absolutely convergent abscissas (o1,,02,, " ,0n, ),
where these numbers of 01,,02,, -+ ,0n,,01,,02,,"** s0n,,01,,02,,"** ,0n, can be either finite
or infinite. When o1 > 01,,02 > 09,, -+ ,0pn > 0Oy, series (1.1) is boundedly convergent; while
01 < 01,02 < 02y, ,On < Op,, series (1.1) is not boundedly convergent. When o1 = oy, >
O1,,02 = 02y > 02, ,0p = Opy > Op,,, series (1.1) is uniformly and boundedly convergent on
01 = 01y,02 = 02y, ,0p = Op,; While 01 = 01, < 01,,00 =02, < 02,, "+ ,0p = 0Ony < On,,
series (1.1) is not uniformly and boundedly convergent on o1 = 01,,02 = 09,, *+ ,0n = Op,-
When o1 > 01,,00 > 09,, -+ ,0, > 0p,, series (1.1) is absolutely convergent, while o7 <
01,,02 < 02, ,0pn < Op,, series (1.1) is not absolutely convergent.

We build an n-dimension space of {01,032, ,0,} and denote the relative boundedly con-
vergent abscissas, relative uniformly and boundedly convergent abscissas, and relative abso-
lutely convergent abscissas by the points of the space. Now we make a straight line in the space
as follows:

01 =1P1(¢) = rsing,_18ing,_o---sinds sin g1 + cy;

oo = 1®o(¢p) = rsingy_1sing,_z - - -sin¢a cos p1 + cz;

On—1 = T¢n71(¢> =rsin ¢n71 Cos ¢n72 + cn-1;

on =10, (¢) = rcos dp_1,

where (b = (¢17¢27' o 7¢n—1) € (0 E)n—l7C = (017027" : 7cn—170) € C" and r € R is a varied

’2
parameter.

We denote the relative boundedly convergent abscissas on the line by

Ub(ca ¢) = (Ulb (Ca ¢)a 02, (Ca ¢)a T Ony (Ov (b))v

the relative uniformly and boundedly convergent abscissas by

Uu(ca ¢) = (Ulu (Ov (b)v 02, (Ov (b)v T 0ny, (Ov (b))v
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