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Abstract In this paper, we study the existence of solutions to an implicit functional equa-

tion involving a fractional integral with respect to a certain function, which generalizes the

Riemann-Liouville fractional integral and the Hadamard fractional integral. We establish an

existence result to such kind of equations using a generalized version of Darbo’s theorem

associated to a certain measure of noncompactness. Some examples are presented.
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1 Introduction

The measure of noncompactness argument is an important tool in Nonlinear Functional

Analysis. Many authors used such argument to study the existence of solutions to various

classes of nonlinear integral equations. We invite the reader to consult the papers [1, 3–13] and

the references therein.

Let V be a Banach space with respect to a certain norm ‖ · ‖. Let B be the set of all

nonempty bounded subsets of V. We say that σ : B → [0,∞) is a measure of noncompactness

(see [4]) if the following conditions hold:
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(C1) for every B ∈ B,

σ(B) = 0 =⇒ B is precompact;

(C2) for every pair (Q1, Q2) ∈ B × B, we have

Q1 ⊆ Q2 =⇒ σ(Q1) ≤ σ(Q1);

(C3) for every B ∈ B,

σ(B) = σ(B) = σ(coB),

where coB denotes the closed convex hull of B;

(C4) for every pair (Q1, Q2) ∈ B × B and γ ∈ (0, 1), we have

σ(γQ1 + (1 − γ)Q2) ≤ γσ(Q1) + (1 − γ)σ(Q2);

(C5) if {Qn} is a sequence of closed and decreasing (w.r.t ⊆) sets in B such that σ(Qn) → 0

as n→ ∞, then Q∞ :=
∞
⋂

n=1

Qn is nonempty and compact.

Let Φ be the set of functions ϕ : [0,∞) → [0,∞) such that

(Φ1) ϕ is a nondecreasing function;

(Φ2) ϕ is an upper semi-continuous function;

(Φ3) ϕ(s) < s, for all s > 0.

Our main tool in this paper is the following fixed point result established in [3], which is a

generalization of the well-known Darbo’s theorem [4].

Lemma 1.1 Let Z be a nonempty, bounded, closed and convex subset of the Banach

space V. Let D : Z → Z be a continuous mapping such that

σ(DW ) ≤ ϕ(σ(W )), W ∈ P(Z),

where ϕ ∈ Φ and P(Z) denotes the set of all the subsets of Z. Then D has at least one fixed

point.

Observe that Darbo’s theorem follows from Lemma 1.1 by taking ϕ(t) = kt, 0 ≤ k < 1.

In this paper, we are concerned with the existence of solutions to the following implicit

integral equation

y(t) = F

(

t, y(t), ψ

(
∫ t

a

g′(s)

(g(t) − g(s))1−α
h(t, s, y(s))ds

))

, t ∈ [a, T ], (1.1)

where T > 0, a ≥ 0, α ∈ (0, 1), F : [a, T ] × R × R → R, ψ : R → R, g : [a, T ] → R and

h : [a, T ]× [a, T ] × R → R. Observe that we can write (1.1) in the form

y(t) = F
(

t, y(t), ψ
(

Γ(α)Iαa,gh(t, ·, y(·))(t)
))

, t ∈ [a, T ],

where Iαa,g is the fractional integral of order α with respect to the function g defined by (see

[14])

Iαa,gf(t) =
1

Γ(α)

∫ t

a

g′(s)f(s)

(g(t) − g(s))1−α
ds, t ∈ [a, T ].

Note that for g(s) = s, Iαa,g is the Riemann-Liouville fractional integral of order α defined by

(see [14])

Iαa f(t) =
1

Γ(α)

∫ t

a

f(s)

(t− s)1−α
ds, t ∈ [a, T ].
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