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Abstract Transient behavior of three-dimensional semiconductor device with heat conduc-

tion is described by a coupled mathematical system of four quasi-linear partial differential

equations with initial-boundary value conditions. The electric potential is defined by an ellip-

tic equation and it appears in the following three equations via the electric field intensity. The

electron concentration and the hole concentration are determined by convection-dominated

diffusion equations and the temperature is interpreted by a heat conduction equation. A

mixed finite volume element approximation, keeping physical conservation law, is used to get

numerical values of the electric potential and the accuracy is improved one order. Two con-

centrations and the heat conduction are computed by a fractional step method combined with

second-order upwind differences. This method can overcome numerical oscillation, dispersion

and decreases computational complexity. Then a three-dimensional problem is solved by

computing three successive one-dimensional problems where the method of speedup is used

and the computational work is greatly shortened. An optimal second-order error estimate

in L2 norm is derived by using prior estimate theory and other special techniques of partial

differential equations. This type of mass-conservative parallel method is important and is

most valuable in numerical analysis and application of semiconductor device.
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1 Introduction

Since semiconductor device develops greatly, so it is necessary to consider the mathematical

model on complicated regions and get numerical solutions more precisely. Therefore, traditional

numerical methods are generally invalid for modern simulation of semiconductor device. The

mathematical model is defined by an initial-boundary value diffusion system of nonlinear partial

differential equations. Then some modern numerical simulation techniques were introduced in

complicated simulation [1–4].

The mathematical model is formulated by four quasi-linear partial differential equations

to describe transient behavior of three-dimensional semiconductor device with heat conduction

[1–9]. The first equation of elliptic type describes electric potential. The next two equations

of convection-diffusion determine electron concentration and hole concentration. The last one

of heat conduction defines the temperature. Electric potential governs the concentrations and

the temperature via its electric field intensity. Combined with corresponding boundary value

conditions and initial value conditions, the details of the whole system were stated as follows

on a three-dimensional domain Ω [1–9],

−∆ψ = ∇ · u = α(p− e+N(X)), X = (x, y, z)T ∈ Ω, t ∈ J = (0, T̂ ], (1.1)

∂e

∂t
= ∇ · [De(X)∇e+ µe(X)eu] −Re(e, p, T ), (X, t) ∈ Ω × J, (1.2)

∂p

∂t
= ∇ · [Dp(X)∇p− µp(X)pu] −Rp(e, p, T ), (X, t) ∈ Ω × J, (1.3)

ρ
∂T

∂t
− ∆T = {(De(X)∇e+ µe(X)eu) − (Dp(X)∇p− µp(X)pu)} · u, (X, t) ∈ Ω × J. (1.4)

In the above expressions, the electric potential ψ, the electron concentration e, the hole concen-

tration p and the temperature T , the electric field intensity u = −∇ψ are unknown functions.

The electric potential is generated by the electric field intensity in the concentration equations

and the heat conduction equation, and governs the above three functions. α = q/ε is defined

by the quotient of two positive constants, the electronic load q and the dielectric coefficient ε.

All coefficients in (1.2)–(1.4) have a positive upper bound and a positive lower bound. The dif-

fusion coefficients De(X) and Dp(X), are respectively equal to UTµe(X) and UTµp(X), where

µe(X) and µp(X) mean the mobilities and UT denotes the heat. A given function N(X) is

defined by ND(X) − NA(X), the difference of impurity concentrations of the donor and the

acceptor, whose values change rapidly as X approaches closely the semiconductor P-N junction.

The symbols Re(e, p, T ) and Rp(e, p, T ) denote generation-recombination rates dependent on

the electron, the hole and the temperature. The coefficient of heat conduction ρ(X) is positive

definite.

Initial value conditions are given by

e(X, 0) = e0(X), p(X, 0) = p0(X), T (X, 0) = T0(X), X ∈ Ω, (1.5)

where positive functions e0(X), p0(X) and T0(X) are known.
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