

Contents lists available at ScienceDirect

Advances in Mathematics

Nonlocal curvature and topology of locally conformally flat manifolds

Ruobing Zhang

Department of Mathematics, Stony Brook University, Stony Brook, NY, United States 11790

ARTICLE INFO

Article history: Received 30 October 2017 Received in revised form 12 February 2018 Accepted 14 February 2018 Available online xxxx Communicated by C. Fefferman

Keywords: Nonlocal curvature Sharp Hausdorff dimension estimate

ABSTRACT

In this paper, we focus on the geometry of compact conformally flat manifolds (M^n,g) with positive scalar curvature. Schoen–Yau proved that its universal cover $(\widetilde{M^n},\widetilde{g})$ is conformally embedded in \mathbb{S}^n such that M^n is a Kleinian manifold. Moreover, the limit set of the Kleinian group has Hausdorff dimension $<\frac{n-2}{2}$. If additionally we assume that the non-local curvature $Q_{2\gamma}\geq 0$ for some $1<\gamma<2$, the Hausdorff dimension of the limit set is less than or equal to $\frac{n-2\gamma}{2}$. If $Q_{2\gamma}>0$, then the above inequality is strict. Moreover, the above upper bound is sharp. As applications, we obtain some topological rigidity and classification theorems in lower dimensions.

© 2018 Published by Elsevier Inc.

Contents

1.	Introduction	131
2.	Preliminaries	134
	2.1. Basics in Kleinian groups	134
	2.2. Fractional GJMS operator and fractional order curvature	138
3.	Fractional Laplacians on Euclidean space	140
	3.1. Harmonic extension and equivalent definitions of fractional Laplacians	141
	3.2. Comparison principle for fractional Laplacians	143

E-mail address: rbzhang@math.stonybrook.edu.

 4. Hausdorff dimension bound of the limit set 5. Geometric applications 5.1. The critical case: Q₃ curvature on 3-dimensional manifolds 	144
**	155
5.1. The critical case: Q_3 curvature on 3-dimensional manifolds	161
	161
5.2. Proof of Theorem 1.4 and Theorem 1.5	165
6. Examples	165
Acknowledgments	169
References	169

1. Introduction

Compact locally conformally flat manifolds with positive scalar curvature can be viewed as Kleinian manifolds by Schoen–Yau's fundamental work in [17]. That is, if (M^n, g) is a compact locally conformally flat manifold with $R_g > 0$, then the universal cover $(\widetilde{M^n}, \widetilde{g})$ can be conformally embedded in the standard sphere (\mathbb{S}^n, g_1) . Moreover, $\pi_1(M^n)$ is isomorphic to a Kleinian group $\Gamma \leq \operatorname{Conf}(\mathbb{S}^n)$ such that

$$\widetilde{M^n} \cong \Omega(\Gamma) \equiv \mathbb{S}^n \setminus \Lambda,$$
 (1.1)

where $\Lambda \equiv \Lambda(\Gamma)$ is the limit set of the Kleinian group Γ . In [17], Schoen–Yau also proved the following Hausdorff dimension estimate on the limit set Λ in the above setting,

$$\dim_{\mathcal{H}}(\Lambda) < \frac{n-2}{2}.\tag{1.2}$$

The above Hausdorff dimension estimate immediately gives homotopy vanishing and homology vanishing results, which are interesting topological obstructions for conformally flat manifolds with nonnegative scalar curvature (see [17] for more details).

In this paper, we will generalize the above theory to the fractional setting. In conformal geometry, scalar curvature R_g arises as the zeroth order term of the conformal Laplacian operator. More precisely, denote $J_g \equiv \frac{R_g}{2(n-1)}$, then

$$P_2 \equiv -\triangle_g + \frac{n-2}{2}J_g. \tag{1.3}$$

It is standard that the second order conformal Laplacian operator P_2 satisfies the following conformal covariance property: For $n \geq 3$, let $\hat{g} = v^{\frac{4}{n-2}}g$ and let \hat{P}_2 be the conformal Laplacian with respect to the conformal metric \hat{g} , then

$$\widehat{P}_2(u) = v^{-\frac{n+2}{n-2}} P_2(uv). \tag{1.4}$$

The fourth order analogy of P_2 is called *Paneitz operator*, which is defined by

$$P_4(u) \equiv (-\Delta_g)^2 u + \text{Div}_g(4A_g\langle \nabla_g u, e_j \rangle e_j - (n-2)J_g \nabla_g u) + \frac{n-4}{2}Q_4 \cdot u, \qquad (1.5)$$

Download English Version:

https://daneshyari.com/en/article/8904627

Download Persian Version:

https://daneshyari.com/article/8904627

<u>Daneshyari.com</u>