

Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

Classifications of exact structures and Cohen–Macaulay-finite algebras

Haruhisa Enomoto

Graduate School of Mathematics, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan

ARTICLE INFO

Article history:

Received 26 September 2017 Received in revised form 29 June 2018

Accepted 9 July 2018 Available online xxxx Communicated by Henning Krause

MSC:

18E10

16G10 18E05

Keywords:

Exact category
Grothendieck group
CM-finite Iwanaga—Gorenstein
algebra
Cotilting module

ABSTRACT

We give a classification of all exact structures on a given idempotent complete additive category. Using this, we investigate the structure of an exact category with finitely many indecomposables. We show that the relation of the Grothendieck group of such a category is generated by AR conflations. Moreover, we obtain an explicit classification of (1) Gorenstein-projective-finite Iwanaga—Gorenstein algebras, (2) Cohen—Macaulay-finite orders, and more generally, (3) cotilting modules U with $^\perp U$ of finite type. In the appendix, we develop the AR theory of exact categories over a noetherian complete local ring, and relate the existence of AR conflations to the AR duality and dualizing varieties.

© 2018 Elsevier Inc. All rights reserved.

Contents

1.	Introduction		839
	1.1.	Conventions	843
2.	Classifying exact structures via Serre subcategories		843
	2.1.	Preliminaries on functor categories	843
	2.2.	Construction of maps	845

E-mail address: m16009t@math.nagoya-u.ac.jp.

	2.3.	Main theorem			
3.	Exact	categories of finite type			
	3.1.	Basic properties			
	3.2.	Admissible exact structures			
	3.3.	Enough projectivity and admissibility			
	3.4.	AR conflations and the Grothendieck group			
4.	Classif	ications of CM-finite algebras			
	4.1.	Cotilting modules			
	4.2.	Classifications for noetherian R -algebras			
	4.3.	Classifications for R -orders			
Acknowledgments					
Apper	ıdix A.	The AR theory for exact categories over a noetherian ring 871			
	A.1.	Existence of AR conflations			
	A.2.	AR conflations, the AR duality and dualizing varieties 872			
References					

1. Introduction

In the representation theory of finite-dimensional algebras, one of the most important subjects is to classify certain categories of finite type. Here we say that an additive k-category over a field k is of finite type if it has only finitely many indecomposable objects up to isomorphism. The aim of this paper is to give a classification of exact categories of finite type, and thereby provide an explicit classification of all GP-finite Iwanaga-Gorenstein algebras. Let us explain the motivation for this.

First we recall how categories of finite type have been studied in the representation theory. It is well-known that an abelian Hom-finite k-category of finite type is nothing but the category $\operatorname{mod} \Lambda$ of finitely generated Λ -modules over some representation-finite k-algebra Λ (see [21, 8.2] or Proposition 3.14 below). A classification of such algebras is one of the main problems in the representation theory of algebras, and has been studied widely by a number of papers, e.g. [20,40,13,22]. For the case of representation-finite R-orders over a noetherian local ring R, we refer the reader to [2,18,25,35,38,44]. Besides abelian categories, triangulated categories of finite type also has been investigated, e.g. in [1]. Such triangulated categories naturally arise in the representation of algebras and in the categorification of cluster algebras.

Among other things, the observation by Auslander [4] is of particular importance to us when we deal with categories of finite type. Let \mathcal{E} be a Hom-finite k-category of finite type and consider the algebra $\Gamma := \operatorname{End}_{\mathcal{E}}(M)$, where M is a direct sum of all non-isomorphic indecomposables in \mathcal{E} . This Γ is called an Auslander algebra of \mathcal{E} , and categorical properties of \mathcal{E} should be related to homological properties of Γ . For example, the condition \mathcal{E} being abelian is equivalent to a certain homological condition of Γ , that is, $\operatorname{gl.dim} \Gamma \leq 2 \leq \operatorname{dom.dim} \Gamma$. This is called the Auslander correspondence, and is now the basic and important viewpoint in the representation theory.

However, most of the algebras are representation-wild, and it is hopeless to understand the whole structure of the module category. Thus nice subcategories of module categories

Download English Version:

https://daneshyari.com/en/article/8904660

Download Persian Version:

https://daneshyari.com/article/8904660

<u>Daneshyari.com</u>