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We give a classification of all exact structures on a given
idempotent complete additive category. Using this, we in-
vestigate the structure of an exact category with finitely
many indecomposables. We show that the relation of the
Grothendieck group of such a category is generated by AR
conflations. Moreover, we obtain an explicit classification
of (1) Gorenstein-projective-finite Iwanaga—Gorenstein alge-
bras, (2) Cohen-Macaulay-finite orders, and more generally,
(3) cotilting modules U with LU of finite type. In the ap-
pendix, we develop the AR theory of exact categories over a
noetherian complete local ring, and relate the existence of AR
conflations to the AR duality and dualizing varieties.
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1. Introduction

In the representation theory of finite-dimensional algebras, one of the most important
subjects is to classify certain categories of finite type. Here we say that an additive
k-category over a field k is of finite type if it has only finitely many indecomposable
objects up to isomorphism. The aim of this paper is to give a classification of exact
categories of finite type, and thereby provide an explicit classification of all GP-finite
Iwanaga—Gorenstein algebras. Let us explain the motivation for this.

First we recall how categories of finite type have been studied in the representation
theory. It is well-known that an abelian Hom-finite k-category of finite type is nothing
but the category mod A of finitely generated A-modules over some representation-finite
k-algebra A (see [21, 8.2] or Proposition 3.14 below). A classification of such algebras is
one of the main problems in the representation theory of algebras, and has been studied
widely by a number of papers, e.g. [20,40,13,22]. For the case of representation-finite
R-orders over a noetherian local ring R, we refer the reader to [2,18,25,35,38,44]. Besides
abelian categories, triangulated categories of finite type also has been investigated, e.g.
in [1]. Such triangulated categories naturally arise in the representation of algebras and
in the categorification of cluster algebras.

Among other things, the observation by Auslander [4] is of particular importance
to us when we deal with categories of finite type. Let £ be a Hom-finite k-category of
finite type and consider the algebra I' := Endg (M), where M is a direct sum of all
non-isomorphic indecomposables in €. This T" is called an Auslander algebra of £, and
categorical properties of £ should be related to homological properties of I'. For example,
the condition £ being abelian is equivalent to a certain homological condition of I, that
is, gl.dimT" < 2 < dom.dimI". This is called the Auslander correspondence, and is now
the basic and important viewpoint in the representation theory.

However, most of the algebras are representation-wild, and it is hopeless to understand
the whole structure of the module category. Thus nice subcategories of module categories
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