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We continue studying an inverse problem in the theory of peri-
odic homogenization of Hamilton–Jacobi equations proposed 
in [14]. Let V1, V2 ∈ C(Rn) be two given potentials which are 
Zn-periodic, and H1, H2 be the effective Hamiltonians associ-
ated with the Hamiltonians 12 |p|

2+V1, 12 |p|
2+V2, respectively.

A main result in this paper is that, if the dimension n = 2, 
and each of V1, V2 contains exactly 3 mutually non-parallel 
Fourier modes, then

H1 ≡ H2 ⇐⇒ V1(x) = V2

(x
c

+ x0

)
for all x∈T2 = R2/Z2,

for some c ∈ Q \ {0} and x0 ∈ T2. When n ≥ 3, the scenario 
is slightly more subtle, and a complete description is provided 
for any dimension. These resolve partially a conjecture stated 
in [14]. Some other related results and open problems are also 
discussed.
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1. Introduction

1.1. Periodic homogenization and the inverse problem

We first describe the theory of periodic homogenization of Hamilton–Jacobi equations. 
For each length scale ε > 0, let uε ∈ C(Rn × [0, ∞)) be the viscosity solution to

{
uε
t + H(Duε) + V

(
x
ε

)
= 0 in Rn × (0,∞),

uε(x, 0) = g(x) on Rn.
(1.1)

Here, the Hamiltonian H(p) − V (x) is of separable form with H ∈ C(Rn), which is 
coercive (i.e., lim|p|→∞ H(p) = +∞), and V ∈ C(Rn), which is Zn-periodic. The initial 
data g ∈ BUC (Rn), the set of bounded, uniformly continuous functions on Rn.

It was shown in [13] that, in the limit as the length scale ε tends to zero, uε converges 
to u locally uniformly on Rn × [0, ∞), and u solves the effective equation

{
ut + H(Du) = 0 in Rn × (0,∞),
u(x, 0) = g(x) on Rn.

(1.2)

The effective Hamiltonian H ∈ C(Rn) is determined in a nonlinear way by H and V
through the cell problems as follows. For each p ∈ Rn, it was derived in [13] that there 
exists a unique constant c ∈ R such that the following cell problem has a continuous 
viscosity solution

H(p + Dv) + V (x) = c in Tn, (1.3)

where Tn is the n-dimensional flat torus Rn/Zn. We then denote by H(p) := c.
During past decades, there have been tremendous progress and vast literature about 

the validity of homogenization and the well-posedness of cell problems in various general-
ized settings. Nevertheless, understanding theoretically how H depends on the potential 
V remains a very challenging and still largely open problem even for the most basic case 
H(p) = 1

2 |p|2. For a smooth periodic potential V , a deep result in [4] asserts that when 
n = 2 and H(p) = 1

2 |p|2, each non-minimum level curve of H associated with 1
2 |p|2 − V

must contain line segments unless V is constant. Its proof relies on delicate analysis based 
on detailed structure of Aubry–Mather sets in two dimensions and a rigidity result in 
Riemannian geometry (the Hopf conjecture). Besides, due to the highly nonlinear nature 
of the problem, efficient numerical schemes to compute H have yet to be found. We refer 
to [1–3,5–11,15] and the references therein for recent progress.

In this paper, we aim to investigate the relation between V and H from the perspective 
of the following inverse problem first formulated in [14].

Question 1. Let H ∈ C(Rn) be a given coercive function, that is, lim|p|→∞ H(p) = +∞. 
Let V1, V2 ∈ C(Rn) be two given potential energy functions which are Zn-periodic. Let 
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