A rigidity result for effective Hamiltonians with 3 -mode periodic potentials ${ }^{\text {T }}$

Hung V. Tran ${ }^{\text {a }}$, Yifeng Yu ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematics, University of Wisconsin Madison, Van Vleck hall, 480 Lincoln drive, Madison, WI 53706, USA
${ }^{\text {b }}$ Department of Mathematics, University of California, Irvine, $410 G$ Rowland Hall, Irvine, CA 92697, USA

A R T I C L E I N F O

Article history:

Received 12 September 2017
Received in revised form 21 June 2018
Accepted 22 June 2018
Available online 10 July 2018
Communicated by O. Savin

$M S C$:

35B10
35B20
35B27
35D40
35 F 21
42A16

Keywords:

Asymptotic expansion
Effective Hamiltonian
Inverse problem
Periodic homogenization
Rigidity result
Trigonometric polynomials

A B S T R A C T

We continue studying an inverse problem in the theory of periodic homogenization of Hamilton-Jacobi equations proposed in [14]. Let $V_{1}, V_{2} \in C\left(\mathbb{R}^{n}\right)$ be two given potentials which are \mathbb{Z}^{n}-periodic, and \bar{H}_{1}, \bar{H}_{2} be the effective Hamiltonians associated with the Hamiltonians $\frac{1}{2}|p|^{2}+V_{1}, \frac{1}{2}|p|^{2}+V_{2}$, respectively. A main result in this paper is that, if the dimension $n=2$, and each of V_{1}, V_{2} contains exactly 3 mutually non-parallel Fourier modes, then
$\bar{H}_{1} \equiv \bar{H}_{2} \Longleftrightarrow V_{1}(x)=V_{2}\left(\frac{x}{c}+x_{0}\right) \quad$ for all $x \in \mathbb{T}^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$,
for some $c \in \mathbb{Q} \backslash\{0\}$ and $x_{0} \in \mathbb{T}^{2}$. When $n \geq 3$, the scenario is slightly more subtle, and a complete description is provided for any dimension. These resolve partially a conjecture stated in [14]. Some other related results and open problems are also discussed.
© 2018 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

1.1. Periodic homogenization and the inverse problem

We first describe the theory of periodic homogenization of Hamilton-Jacobi equations. For each length scale $\varepsilon>0$, let $u^{\varepsilon} \in C\left(\mathbb{R}^{n} \times[0, \infty)\right)$ be the viscosity solution to

$$
\begin{cases}u_{t}^{\varepsilon}+H\left(D u^{\varepsilon}\right)+V\left(\frac{x}{\varepsilon}\right)=0 & \text { in } \mathbb{R}^{n} \times(0, \infty) \tag{1.1}\\ u^{\varepsilon}(x, 0)=g(x) & \text { on } \mathbb{R}^{n}\end{cases}
$$

Here, the Hamiltonian $H(p)-V(x)$ is of separable form with $H \in C\left(\mathbb{R}^{n}\right)$, which is coercive (i.e., $\left.\lim _{|p| \rightarrow \infty} H(p)=+\infty\right)$, and $V \in C\left(\mathbb{R}^{n}\right)$, which is \mathbb{Z}^{n}-periodic. The initial data $g \in \operatorname{BUC}\left(\mathbb{R}^{n}\right)$, the set of bounded, uniformly continuous functions on \mathbb{R}^{n}.

It was shown in [13] that, in the limit as the length scale ε tends to zero, u^{ε} converges to u locally uniformly on $\mathbb{R}^{n} \times[0, \infty)$, and u solves the effective equation

$$
\begin{cases}u_{t}+\bar{H}(D u)=0 & \text { in } \mathbb{R}^{n} \times(0, \infty) \tag{1.2}\\ u(x, 0)=g(x) & \text { on } \mathbb{R}^{n}\end{cases}
$$

The effective Hamiltonian $\bar{H} \in C\left(\mathbb{R}^{n}\right)$ is determined in a nonlinear way by H and V through the cell problems as follows. For each $p \in \mathbb{R}^{n}$, it was derived in [13] that there exists a unique constant $c \in \mathbb{R}$ such that the following cell problem has a continuous viscosity solution

$$
\begin{equation*}
H(p+D v)+V(x)=c \quad \text { in } \mathbb{T}^{n} \tag{1.3}
\end{equation*}
$$

where \mathbb{T}^{n} is the n-dimensional flat torus $\mathbb{R}^{n} / \mathbb{Z}^{n}$. We then denote by $\bar{H}(p):=c$.
During past decades, there have been tremendous progress and vast literature about the validity of homogenization and the well-posedness of cell problems in various generalized settings. Nevertheless, understanding theoretically how \bar{H} depends on the potential V remains a very challenging and still largely open problem even for the most basic case $H(p)=\frac{1}{2}|p|^{2}$. For a smooth periodic potential V, a deep result in [4] asserts that when $n=2$ and $H(p)=\frac{1}{2}|p|^{2}$, each non-minimum level curve of \bar{H} associated with $\frac{1}{2}|p|^{2}-V$ must contain line segments unless V is constant. Its proof relies on delicate analysis based on detailed structure of Aubry-Mather sets in two dimensions and a rigidity result in Riemannian geometry (the Hopf conjecture). Besides, due to the highly nonlinear nature of the problem, efficient numerical schemes to compute \bar{H} have yet to be found. We refer to $[1-3,5-11,15]$ and the references therein for recent progress.

In this paper, we aim to investigate the relation between V and \bar{H} from the perspective of the following inverse problem first formulated in [14].

Question 1. Let $H \in C\left(\mathbb{R}^{n}\right)$ be a given coercive function, that is, $\lim _{|p| \rightarrow \infty} H(p)=+\infty$. Let $V_{1}, V_{2} \in C\left(\mathbb{R}^{n}\right)$ be two given potential energy functions which are \mathbb{Z}^{n}-periodic. Let

https://daneshyari.com/en/article/8904682

Download Persian Version:

https://daneshyari.com/article/8904682

Daneshyari.com

[^0]: the work of HT is partially supported by NSF grants DMS-1615944 and DMS-1664424, the work of YY is partially supported by NSF CAREER award \#1151919.

 * Corresponding author.

 E-mail addresses: hung@math.wisc.edu (H.V. Tran), yyu1@math.uci.edu (Y. Yu).

