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We analyse the behaviour of solutions of the linear heat 
equation in Rd for initial data in the classes Mε(Rd) of 
Radon measures with 

∫
Rd e−ε|x|2 d|u0| < ∞. We show that 

these classes are optimal for local and global existence of 
non-negative solutions: in particular M0(Rd) := ∩ε>0Mε(Rd)
consists of those initial data for which a solution of the heat 
equation can be given for all time using the heat kernel 
representation formula. We prove existence, uniqueness, and 
regularity results for such initial data, which can grow rapidly 
at infinity, and then show that they give rise to properties 
associated more often with nonlinear models. We demonstrate 
the finite-time blowup of solutions, showing that the set of 
blowup points is the complement of a convex set, and that 
given any closed convex set there is an initial condition whose 
solutions remain bounded precisely on this set at the ‘blowup 
time’. We also show that wild oscillations are possible from 
non-negative initial data as t → ∞ and that one can prescribe 
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the behaviour of u(0, t) to be any real-analytic function γ(t)
on [0, ∞).

© 2018 Published by Elsevier Inc.

1. Introduction

In this paper we consider the linear heat equation posed on the whole space Rd, with 
very general initial data, which may be either only locally integrable or even a Radon 
measure. For an appropriate class of initial data u0, see e.g. [26], it is well known that 
solutions to this equation,

ut − Δu = 0, x ∈ R
d, t > 0, u(x, 0) = u0(x), (1.1)

can be written using the heat kernel as

u(x, t) = S(t)u0(x) := 1
(4πt)d/2

∫
Rd

e−|x−y|2/4tu0(y) dy, x ∈ R
d, t > 0. (1.2)

It turns out that the behaviour of solutions in (1.2) is significantly affected by the 
way the mass of the initial data is distributed in space.

If the mass as |x| → ∞ is not too large it is well known that the ‘mass’ of the initial 
data moves to infinity and the solutions decay to zero in suitable norms. For example, if 
u0 ∈ Lp(Rd) for some 1 ≤ p < ∞ then classical estimates ensure that

‖u(t)‖Lq(Rd) ≤ (4πt)−
d
2 ( 1

p− 1
q )‖u0‖Lp(Rd), for every t > 0 and q with p ≤ q ≤ ∞,

(1.3)

which in particular implies that all solutions converge uniformly to zero on the whole 
of Rd. In particular, for u0 ∈ L1(Rd) since we also have

∫
Rd

u(x, t) dx =
∫
Rd

u0(y) dy, t > 0,

it follows that for such u0 the total mass is preserved but (from (1.3)) the supremum 
tends to zero, i.e. the mass moves to infinity.

It is also known that as t → ∞, solutions asymptotically resemble the heat kernel

K(x, t) = (4πt)−d/2e−|x|2/4t,

see for example Section 1.1.4 in [13]. The faster the initial data decays as |x| → ∞ the 
higher the order of the asymptotics of the solution that are described by the heat kernel, 
see e.g. [9].
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