

Contents lists available at ScienceDirect

### Advances in Mathematics

www.elsevier.com/locate/aim



# The Beilinson regulator is a map of ring spectra



Ulrich Bunke<sup>a</sup>, Thomas Nikolaus<sup>b</sup>, Georg Tamme<sup>c,\*,1</sup>

- <sup>a</sup> Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg, Germany
   <sup>b</sup> FB Mathematik und Informatik, Universität Münster, Einsteinstr. 62, 48149
   Münster, Germany
- <sup>c</sup> Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg, Germany

#### ARTICLE INFO

## Article history: Received 17 January 2017 Received in revised form 26 April 2018

Accepted 1 May 2018 Available online 28 May 2018 Communicated by A. Blumberg

Keywords:
Beilinson regulator
K-theory
Absolute Hodge cohomology
Ring spectra
Motivic homotopy theory

#### ABSTRACT

We prove that the Beilinson regulator, which is a map from K-theory to absolute Hodge cohomology of a smooth variety, admits a refinement to a map of  $E_{\infty}$ -ring spectra in the sense of algebraic topology. To this end we exhibit absolute Hodge cohomology as the cohomology of a commutative differential graded algebra over  $\mathbb R$ . The associated spectrum to this CDGA is the target of the refinement of the regulator and the usual K-theory spectrum is the source. To prove this result we compute the space of maps from the motivic K-theory spectrum to the motivic spectrum that represents absolute Hodge cohomology using the motivic Snaith theorem. We identify those maps which admit an  $E_{\infty}$ -refinement and prove a uniqueness result for these refinements.

© 2018 Elsevier Inc. All rights reserved.

#### Contents

| 1. | Introduction                                  | 42 |
|----|-----------------------------------------------|----|
| 2. | Mixed Hodge complexes                         | 44 |
| 3. | The complex IDR and absolute Hodge cohomology | 53 |

<sup>\*</sup> Corresponding author.

E-mail address: georg.tamme@mathematik.uni-regensburg.de (G. Tamme).

 $<sup>^{1}</sup>$  The authors are supported by the SFB/CRC 1085  $\it{Higher Invariants}$  (Universität Regensburg) funded by the DFG.

| 4.     | The cate | egory of motivic spectra                      | 58 |
|--------|----------|-----------------------------------------------|----|
| 5.     | The mot  | civic K-theory spectrum                       | 59 |
| 6.     | The spec | ctrum representing absolute Hodge cohomology  | 65 |
| 7.     | The regu | ılator                                        | 58 |
|        |          | Infinity categories and weak equivalences     |    |
| Apper  | ndix B.  | Representable functors and algebra structures | 78 |
| Apper  | ndix C.  | Algebra localizations                         | 33 |
| Refere | ences    |                                               | 35 |
|        |          |                                               |    |

#### 1. Introduction

Let X be a smooth algebraic variety over  $\mathbb{C}$ . On the one hand, we can form its algebraic K-groups  $K_*(X)$ , which encode information about the symmetric monoidal category of vector bundles on X with respect to the direct sum. On the other hand, we have the Betti cohomology groups  $H^*(X(\mathbb{C}), \mathbb{R})$ , which carry a natural mixed  $\mathbb{R}$ -Hodge structure by [9]. In [1] Beilinson constructs a natural complex in the derived category of mixed  $\mathbb{R}$ -Hodge structures whose cohomology is the Betti cohomology with its mixed Hodge structure, and he defines absolute cohomology groups  $H^*_{abs.\ Hodge}(X,\mathbb{R}(i))$  of X as Ext-groups of the Tate Hodge structure  $\mathbb{R}(-i)$  and this complex. The absolute Hodge cohomology groups are the target of the Beilinson regulator, a natural homomorphism of graded groups

reg: 
$$K_*(X) \to \bigoplus_{i \in \mathbb{N}} H_{\text{abs. Hodge}}^{2i-*}(X, \mathbb{R}(i))$$
. (1)

The tensor product of vector bundles induces a commutative ring structure on  $K_*(X)$ , and the  $\cup$ -product in the Betti cohomology of X provides a commutative ring structure on  $\bigoplus_{i\in\mathbb{N}} H^*_{\text{abs. Hodge}}(X,\mathbb{R}(i))$ . It is known that the regulator is a homomorphism of rings [15, 2.35].

Our main motivation for the present paper is the application of the regulator to a multiplicative version of differential algebraic K-theory as discussed in the series of papers [2,5,6]. For this, one needs a more refined version of the regulator map: The algebraic K-groups  $K_*(X)$  are defined as homotopy groups of an algebraic K-theory spectrum K(X) and the multiplication on the K-groups is induced by an  $E_{\infty}$ -ring structure on this spectrum. Absolute Hodge cohomology on the other hand is defined as Ext-groups in the derived category of mixed Hodge complexes. We realize the absolute Hodge cohomology groups as the cohomology groups of a specific chain complex  $\mathbf{IDR}(X)$  (Definition 3.3) consisting of differential forms. The usual wedge product of forms gives a multiplication on the chain level, i.e. it makes  $\mathbf{IDR}(X)$  into a commutative differential graded algebra. Under the Eilenberg–MacLane equivalence H this commutative differential graded algebra induces an  $E_{\infty}$ -ring spectrum  $H(\mathbf{IDR}(X))$  whose homotopy groups are the cohomology groups of  $\mathbf{IDR}(X)$  and therefore the absolute Hodge cohomology groups of X. For the application we have in mind, it is an important question whether the regulator

## Download English Version:

# https://daneshyari.com/en/article/8904697

Download Persian Version:

https://daneshyari.com/article/8904697

Daneshyari.com