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We provide a description of the space of continuous and 
translation invariant Minkowski valuations Φ : Kn → Kn for 
which there is an upper and a lower bound for the volume 
of Φ(K) in terms of the volume of the convex body K itself. 
Although no invariance with respect to a group acting on the 
space of convex bodies is imposed, we prove that only two 
types of operators appear: a family of operators having only 
cylinders over (n − 1)-dimensional convex bodies as images, 
and a second family consisting essentially of 1-homogeneous 
operators. Using this description, we give improvements of 
some known characterization results for the difference body.
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1. Introduction

An inequality between two geometric quantities associated to a convex body is called 
affine isoperimetric inequality if the ratio of these two quantities is invariant under the 
action of all affine transformations of the convex body. Affine isoperimetric inequalities 
have always constituted an important part of convex geometry and have found numerous 
applications to different areas, such as functional analysis, partial differential equations, 
or geometry of numbers (see [41]). Moreover, affine isoperimetric inequalities are usually 
stronger than their Euclidean counterparts.

Three of the best known affine isoperimetric inequalities associated to operators be-
tween convex bodies are: the Rogers–Shephard inequality, associated to the difference 
body; the Busemann–Petty centroid inequality, associated to the centroid body; and 
the Petty projection and Zhang inequalities, associated to the projection body. One 
of the first and most relevant applications of these inequalities was given by Zhang 
[67], who obtained an affine version of the Sobolev inequality from (an extension of) 
the Petty projection inequality. Ten years later, Haberl and Schuster [26,27] general-
ized it to an asymmetric affine Lp-Sobolev inequality by using the characterization of 
the Lp-projection bodies previously obtained by Ludwig [35] in the context of the so-
called Lp-Minkowski valuations. For further results in this direction we refer to [57, 
Section 10.15], [16,28,29,39,40,42–44,63], and references therein.

In the present paper, we initiate a study aiming at a deeper understanding of the 
relationship between affine isoperimetric inequalities and characterization results for 
Minkowski valuations, by taking the converse direction of Haberl and Schuster [26] and 
classifying, given an affine isoperimetric inequality, all continuous (and translation in-
variant) Minkowski valuations by which it is satisfied. In this paper, we focus on the 
affine isoperimetric inequality associated to the difference body operator.

We denote by Kn the space of convex and compact sets (convex bodies) in Rn. The 
difference body operator D : Kn −→ Kn is defined by

DK := K + (−K), (1)

where −K := {x ∈ R
n : −x ∈ K} and + denotes the Minkowski or vectorial sum. 

Notice that the ratio

Vn(DK)
Vn(K)

is invariant under affine transformations of Rn (here Vn denotes the n-dimensional vol-
ume). The affine isoperimetric inequalities associated to the difference body read as 
follows

2nVn(K) ≤ Vn(DK) ≤
(

2n
n

)
Vn(K), ∀K ∈ Kn. (RS)
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