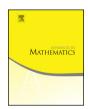


Contents lists available at ScienceDirect

# Advances in Mathematics





# Algebraic and o-minimal flows on complex and real tori



Ya'acov Peterzil<sup>a</sup>, Sergei Starchenko<sup>b,\*</sup>

- <sup>a</sup> University of Haifa, Israel
- <sup>b</sup> University of Notre Dame, United States of America

#### ARTICLE INFO

#### Article history: Received 14 September 2017 Received in revised form 27 March 2018 Accepted 25 May 2018 Available online 5 June 2018

Communicated by Slawomir Solecki

Keywords:
Algebraic flows
O-minimal flows
Orbit closure
O-minimal
Algebraically closed valued fields

#### ABSTRACT

We consider the covering map  $\pi: \mathbb{C}^n \to \mathbb{T}$  of a compact complex torus. Given an algebraic variety  $X \subseteq \mathbb{C}^n$  we describe the topological closure of  $\pi(X)$  in  $\mathbb{T}$ . We obtain a similar description when  $\mathbb{T}$  is a real torus and  $X \subseteq \mathbb{R}^n$  is a set definable in an o-minimal structure over the reals.

© 2018 Elsevier Inc. All rights reserved.

### Contents

| 1. | Introduction                             | 540 |  |
|----|------------------------------------------|-----|--|
| 2. | Preliminaries                            |     |  |
|    | 2.1. Model theoretic preliminaries       | 543 |  |
|    | 2.2. Basics on additive subgroups        | 544 |  |
| 3. | Valued field structures on $\mathfrak R$ | 544 |  |
|    | 3.1. Closure and the standard part map   | 545 |  |

E-mail addresses: kobi@math.haifa.ac.il (Y. Peterzil), sstarche@nd.edu (S. Starchenko).

 $<sup>^{\</sup>pm}$  Both authors thank the Israel–US Binational Science Foundation for its support. The second author was supported by the NSF research grant DMS-1500671.

<sup>\*</sup> Corresponding author.

|       | 3.2.   | The algebraic closure $\mathfrak{C}$ of $\mathfrak{R}$ as an ACVF structure |
|-------|--------|-----------------------------------------------------------------------------|
|       | 3.3.   | On $\mu$ -stabilizers of types                                              |
|       |        | 3.3.1. The o-minimal case                                                   |
|       |        | 3.3.2. The algebraic case                                                   |
| 4.    | Affine | asymptotes                                                                  |
| 5.    | Descr  | ibing $\operatorname{cl}(X+\Lambda)$ using asymptotic flats                 |
| 6.    | Comp   | leting the proof in the algebraic case                                      |
|       | 6.1.   | On families of affine subspaces                                             |
|       | 6.2.   | Proof of the main theorem in the algebraic case                             |
| 7.    | The c  | -minimal result                                                             |
|       | 7.1.   | Asymptotic R-flats                                                          |
|       | 7.2.   | Neat families in the o-minimal context                                      |
|       | 7.3.   | Proof of the main theorem                                                   |
|       |        | 7.3.1. Proof of Clause (i)                                                  |
|       |        | 7.3.2. Proof of Clause (ii)                                                 |
| 8.    | An ex  | tample                                                                      |
| Refer | ences  | 568                                                                         |
|       |        |                                                                             |

## 1. Introduction

Let A be a complex abelian variety of dimension n, and let  $\pi: \mathbb{C}^n \to A$  be its covering map. It follows from a theorem of Ax (see [1, Theorem 3]), that if  $X \subseteq \mathbb{C}^n$  is an algebraic variety then the Zariski closure of  $\pi(X)$  is a union of finitely many cosets of abelian subvarieties of A.

In [6,7], Ullmo and Yafaev attempt to characterize the topological closure of  $\pi(X)$  in the above setting and also in the case that X is a set definable in an o-minimal expansion of the real field.

They prove a similar result to Ax's for algebraic curves (see [6, Theorem 2.4]: if  $X \subseteq \mathbb{C}^n$  is an irreducible algebraic curve then the topological closure of  $\pi(X)$  in A is

$$\operatorname{cl}(\pi(X)) = \pi(X) \cup \bigcup_{k=1}^{m} Z_k,$$

where each  $Z_k$  is a real weakly special subvariety of A, namely a coset of a real Lie subgroup of A. They conjecture that the same is true for algebraic subvarieties  $X \subseteq \mathbb{C}^n$  of arbitrary dimension.

In this article we give a full description of  $cl(\pi(X))$  when X is an algebraic subvariety of  $\mathbb{C}^n$  of arbitrary dimension and also when  $X \subseteq \mathbb{R}^n$  is definable in an o-minimal structure over the reals and  $\pi : \mathbb{R}^n \to \mathbb{T}$  is the covering map of a compact real torus.

As we show, the conjecture from [6] fails as stated (see Section 8) and we prove a modified version by showing that the frontier of  $\pi(X)$  consists of finitely many families of real weakly special subvarieties. Our theorem holds for arbitrary compact complex tori and not only for abelian varieties.

**Theorem 1.1.** Let  $\pi: \mathbb{C}^n \to \mathbb{T}$  be the covering map of a compact complex torus and let X be an algebraic subvariety of  $\mathbb{C}^n$ . Then there are finitely many algebraic subvarieties

# Download English Version:

# https://daneshyari.com/en/article/8904719

Download Persian Version:

https://daneshyari.com/article/8904719

<u>Daneshyari.com</u>