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The present paper is about Bernstein-type estimates for 
Jacobi polynomials and their applications to various branches 
in mathematics. This is an old topic but we want to add 
a new wrinkle by establishing some intriguing connections 
with dispersive estimates for a certain class of Schrödinger 
equations whose Hamiltonian is given by the generalized 
Laguerre operator. More precisely, we show that dispersive 
estimates for the Schrödinger equation associated with the 
generalized Laguerre operator are connected with Bernstein-
type inequalities for Jacobi polynomials. We use known 
uniform estimates for Jacobi polynomials to establish some 
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new dispersive estimates. In turn, the optimal dispersive decay 
estimates lead to new Bernstein-type inequalities.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

To set the stage, for α, β > −1, let w(α,β)(x) = (1 − x)α(1 + x)β for x ∈ (−1, 1) be a 
Jacobi weight. The corresponding orthogonal polynomials P (α,β)

n , normalized by

P (α,β)
n (1) =

(
n + α

n

)
= (α + 1)n

n! (1.1)

for all n ∈ N0 (see (1.21) for notation of Pochhammer symbols and binomial coeffi-
cients), are called the Jacobi polynomials. They are expressed as (terminating) Gauss 
hypergeometric series (1.22) by [42, (4.21.2)]
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They also satisfy Rodrigues’ formula [42, (4.3.1), (4.3.2)]
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(1.3)

= (−1)n

2nn! (1 − x)−α(1 + x)−β dn

dxn

{
(1 − x)α+n(1 + x)β+n

}
. (1.4)

Note that, by (1.3), P (α,β)
n (x) is for given n a polynomial in x, α and β. Thus, if we don’t 

need the orthogonality relations of the Jacobi polynomials, then we are not restricted by 
the bounds α, β > −1.

The (squared normalized) L2 norm of P (α,β)
n is given by [42, (4.3.3)]

Γ(α + β + 2)
2α+β+1Γ(α + 1)Γ(β + 1)

1∫
−1

|P (α,β)
n (x)|2w(α,β)(x)dx

= n + α + β + 1
2n + α + β + 1

(α + 1)n(β + 1)n
(α + β + 2)n n! . (1.5)

Jacobi polynomials include the ultraspherical (Gegenbauer) polynomials [42, (4.37.1)]

P (λ)
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P
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2 )
n (x), (1.6)
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