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The proof of the key Theorem 2.21 in [4] is incorrect. Towards the end of the proof it 
is claimed that I(v) � J(v), but in fact we only have an epimorphism J(v) � I(v), and 
it is trivial to obtain an example where the constructed scheme V̂ fails to be flat at v
over S; for instance, it can be arranged that V̂ = V .

The result is nevertheless true if we allow passing to an étale neighborhood of V in X, 
as we now explain. We fix a base scheme B and a flat finitely presented group scheme G
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over B. Given a G-scheme X and a G-invariant closed subscheme Z ⊂ X, we shall say 
that a G-morphism f : X ′ → X is a G-equivariant étale neighborhood of Z if it is locally 
finitely presented, if the induced map Z ×X X ′ → Z is an isomorphism, and if f is étale 
at all points lying over Z.

Theorem A (Correct version of Theorem 2.21). Suppose that B is affine and that G is 
linearly reductive. Let
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be a cartesian square of G-schemes where X is affine and s is a closed immersion. Let 
V ⊂ XZ be a finitely presented G-invariant closed subscheme of XZ that is smooth (resp. 
étale) over Z. Suppose that p is smooth at each point of V and that X has the G-resolution 
property. Then there exists an affine G-equivariant étale neighborhood X ′ → X of V and 
a finitely presented G-invariant closed subscheme V̂ ⊂ X ′ lifting V such that V̂ → S is 
smooth (resp. étale) at each point of V .

Theorem 2.21 is cited five times in the rest of the paper, but Theorem A suffices in 
each case:

• In Remark 2.22: This remark should now be ignored.
• In Corollary 2.23: No changes are needed.
• In Corollary 2.24: No changes are needed.
• In Lemma 4.11: To use Theorem A, one has to replace V̂ (hence Ṽ and W̃ ) by an 

affine G-equivariant étale neighborhood of W ; this does not affect the rest of the 
argument.

• In Theorem 4.18: When proving assertion (∗), after reducing to the case S small 
and affine, Lemma 4.16 allows us to replace X by any affine G-equivariant étale 
neighborhood of t(Z). Given this, Theorem A applies in the same way.

To prove Theorem A, we need an equivariant version of Arabia’s theorem on lifting 
locally free sheaves1 along closed immersions [1, Théorème 1.2.3]:

Theorem B. Suppose that B is affine and that G is linearly reductive. Let s : Z ↪→ X

be a closed G-immersion between affine G-schemes and let N be a locally free G-module 
on Z. If X has the G-resolution property, there exists an affine G-equivariant étale 
neighborhood X ′ → X of Z and a locally free G-module M on X ′ lifting N.

1 Locally free sheaves are tacitly of finite rank in what follows.
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