

Contents lists available at ScienceDirect

Advances in Mathematics

Corrigendum

Corrigendum to "The six operations in equivariant motivic homotopy theory" [Adv. Math. 305 (2017) 197–279]

Marc Hoyois

 $Department\ of\ Mathematics,\ University\ of\ Southern\ California,\ Los\ Angeles,\ CA,\ USA$

ARTICLE INFO

Article history: Available online 5 June 2018 Communicated by A. Blumberg

MSC: 14F42 55P91

Keywords: Motivic homotopy theory Equivariant homotopy theory Algebraic stacks

The proof of the key Theorem 2.21 in [4] is incorrect. Towards the end of the proof it is claimed that $\Im(v) \simeq \Im(v)$, but in fact we only have an epimorphism $\Im(v) \twoheadrightarrow \Im(v)$, and it is trivial to obtain an example where the constructed scheme \hat{V} fails to be flat at v over S; for instance, it can be arranged that $\hat{V} = V$.

The result is nevertheless true if we allow passing to an étale neighborhood of V in X, as we now explain. We fix a base scheme B and a flat finitely presented group scheme G

DOI of original article: https://doi.org/10.1016/j.aim.2016.09.031. *E-mail address:* hoyois@mit.edu.

 URL : http://math.mit.edu/~hoyois/.

over B. Given a G-scheme X and a G-invariant closed subscheme $Z \subset X$, we shall say that a G-morphism $f \colon X' \to X$ is a G-equivariant étale neighborhood of Z if it is locally finitely presented, if the induced map $Z \times_X X' \to Z$ is an isomorphism, and if f is étale at all points lying over Z.

Theorem A (Correct version of Theorem 2.21). Suppose that B is affine and that G is linearly reductive. Let

$$\begin{array}{ccc} X_Z & \stackrel{t}{\longrightarrow} & X \\ \downarrow & & \downarrow p \\ Z & \stackrel{s}{\longrightarrow} & S \end{array}$$

be a cartesian square of G-schemes where X is affine and s is a closed immersion. Let $V \subset X_Z$ be a finitely presented G-invariant closed subscheme of X_Z that is smooth (resp. étale) over Z. Suppose that p is smooth at each point of V and that X has the G-resolution property. Then there exists an affine G-equivariant étale neighborhood $X' \to X$ of V and a finitely presented G-invariant closed subscheme $\hat{V} \subset X'$ lifting V such that $\hat{V} \to S$ is smooth (resp. étale) at each point of V.

Theorem 2.21 is cited five times in the rest of the paper, but Theorem A suffices in each case:

- In Remark 2.22: This remark should now be ignored.
- In Corollary 2.23: No changes are needed.
- In Corollary 2.24: No changes are needed.
- In Lemma 4.11: To use Theorem A, one has to replace \hat{V} (hence \tilde{V} and \tilde{W}) by an affine G-equivariant étale neighborhood of W; this does not affect the rest of the argument.
- In Theorem 4.18: When proving assertion (*), after reducing to the case S small and affine, Lemma 4.16 allows us to replace X by any affine G-equivariant étale neighborhood of t(Z). Given this, Theorem A applies in the same way.

To prove Theorem A, we need an equivariant version of Arabia's theorem on lifting locally free sheaves¹ along closed immersions [1, Théorème 1.2.3]:

Theorem B. Suppose that B is affine and that G is linearly reductive. Let $s: Z \hookrightarrow X$ be a closed G-immersion between affine G-schemes and let $\mathbb N$ be a locally free G-module on Z. If X has the G-resolution property, there exists an affine G-equivariant étale neighborhood $X' \to X$ of Z and a locally free G-module $\mathbb M$ on X' lifting $\mathbb N$.

¹ Locally free sheaves are tacitly of finite rank in what follows.

Download English Version:

https://daneshyari.com/en/article/8904740

Download Persian Version:

https://daneshyari.com/article/8904740

<u>Daneshyari.com</u>