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In [7] Monod introduced examples of groups of piecewise 
projective homeomorphisms which are not amenable and 
which do not contain free subgroups, and in [6] Lodha and 
Moore introduced examples of finitely presented groups with 
the same property. In this article we examine the normal 
subgroup structure of these groups. Two important cases of 
our results are the groups H and G0. We show that the 
group H of piecewise projective homeomorphisms of R has the 
property that H′′ is simple and that every proper quotient of 
H is metabelian. We establish simplicity of the commutator 
subgroup of the group G0, which admits a presentation with 3
generators and 9 relations. Further, we show that every proper 
quotient of G0 is abelian. It follows that the normal subgroups 
of these groups are in bijective correspondence with those of 
the abelian (or metabelian) quotient.
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0. Introduction

In [7] Monod proved that the group H of piecewise projective homeomorphisms of the 
real line is non-amenable and does not contain non-abelian free subgroups. This provides 
a new counterexample to the so called von Neumann–Day problem [8,2]. In fact, Monod 
introduced a family of groups H(A) for a subring A of R. In the case where A is strictly 
larger than Z, they were all demonstrated to be counterexamples. The group H is the 
case in which A = R.

The subgroups G0 and G of H were introduced by Lodha and Moore in [6] as finitely 
presented counterexamples. The groups G0 and G share many features with Thompson’s 
group F . They can be viewed as groups of homeomorphisms of the Cantor set of infinite 
binary sequences, and as groups of homeomorphisms of the real line. They admit small 
finite presentations, and symmetric infinite presentations with a natural normal form [6,
5]. Further, they are of type F∞ [5]. Viewed as homeomorphisms of the Cantor set, the 
elements can be represented by tree diagrams.

Thompson’s group F satisfies the property that F ′ is simple, and every proper quotient 
of F is abelian [1]. In this article we examine the normal subgroup structure, and in 
particular the commutator subgroup structure of G, G0, and H(A) for a subring A of R, 
and obtain properties similar to F . We prove the following.

Theorem 1. Let A be a subring of R. If A has units other than ±1, then:

(1) H(A)′ �= H(A)′′.
(2) H(A)′′ is simple.
(3) Every proper quotient of H(A) is metabelian.

If the only units in A are ±1, then:

(1) H(A)′ is simple.
(2) Every proper quotient of H(A) is abelian.
(3) All finite index subgroups of H(A) are normal in H(A).

We show the following for the finitely presented groups G0 and G (defined in Sec-
tion 1).

Theorem 2. The group G0 satisfies the following:

(1) G′
0 is simple.

(2) Every proper quotient of G0 is abelian.
(3) All finite index subgroups of G0 are normal in G0.

The group G satisfies the following:
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