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Since the early work of Richard Stanley, it has been observed
that several permutation statistics have a remarkable prop-
erty with respect to shuffles of permutations. We formalize
this notion of a shuffle-compatible permutation statistic and
introduce the shuffle algebra of a shuffle-compatible permuta-
tion statistic, which encodes the distribution of the statistic
over shuffles of permutations. This paper develops a the-
ory of shuffle-compatibility for descent statistics—statistics
that depend only on the descent set and length—which has
close connections to the theory of P-partitions, quasisymmet-
ric functions, and noncommutative symmetric functions. We
use our framework to prove that many descent statistics are
shuffle-compatible and to give explicit descriptions of their
shuffle algebras, thus unifying past results of Stanley, Gessel,
Stembridge, Aguiar—-Bergeron—Nyman, and Petersen.
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1. Introduction

We say that m = my7ma - - - 7, is a permutation of length n (or an n-permutation) if it
is a sequence of n distinct letters—not necessarily from 1 to n—in P, the set of positive
integers. For example, 7 = 47381 is a permutation of length 5. Let |7| denote the length
of a permutation 7 and let 3,, denote the set of all permutations of length n.?

A permutation statistic (or statistic) st is a function defined on permutations such
that st(m) = st(o) whenever m and o are permutations with the same relative order.
Three classical examples of permutation statistics are the descent set Des, the descent
number des, and the major index maj. We say that ¢ € [n — 1] is a descent of ™ € P, if
m; > mi+1. Then the descent set

Des(m):={ien—1]:m > mit1}

2 In Section 2, we will in a few instances consider permutations with a letter 0. We note that, in these
cases, every property of permutations that is used still holds when 0 is allowed to be a letter.

3 Define the standardization of an n-permutation 7 to be the permutation of [n] obtained by replacing
the ith smallest letter of @ with ¢ for ¢ from 1 to n. Then two permutations are said to have the same
relative order if they have the same standardization.
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