

Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

Shuffle-compatible permutation statistics

Ira M. Gessel, Yan Zhuang*

Department of Mathematics, Brandeis University¹, United States

ARTICLE INFO

Article history: Received 2 June 2017 Received in revised form 16 February 2018 Accepted 27 February 2018 Available online xxxx Communicated by Petter Brändén

MSC:

primary 05A05 secondary 05A15, 05E05, 16T30

Keywords:
Permutations
Shuffles
Permutation statistics
P-partitions
Quasisymmetric functions
Noncommutative symmetric functions

ABSTRACT

Since the early work of Richard Stanley, it has been observed that several permutation statistics have a remarkable property with respect to shuffles of permutations. We formalize this notion of a shuffle-compatible permutation statistic and introduce the shuffle algebra of a shuffle-compatible permutation statistic, which encodes the distribution of the statistic over shuffles of permutations. This paper develops a theory of shuffle-compatibility for descent statistics—statistics that depend only on the descent set and length—which has close connections to the theory of P-partitions, quasisymmetric functions, and noncommutative symmetric functions. We use our framework to prove that many descent statistics are shuffle-compatible and to give explicit descriptions of their shuffle algebras, thus unifying past results of Stanley, Gessel, Stembridge, Aguiar—Bergeron—Nyman, and Petersen.

© 2018 Elsevier Inc. All rights reserved.

Contents

1.	Introduction	86
2.	Permutations and descents	90
	2.1. Increasing runs and descent compositions	90

[†] The first author was supported by a grant from the Simons Foundation (#427060, Ira Gessel).

^{*} Corresponding author.

E-mail addresses: gessel@brandeis.edu (I.M. Gessel), zhuangy@brandeis.edu (Y. Zhuang).

MS 050, Waltham, MA 02453.

	2.2.	Descent statistics	91
	2.3.	Possible values of some descent statistics	93
	2.4.	A bijective proof of the shuffle-compatibility of the descent set	95
3.	Shuffle	e algebras	98
	3.1.	Definition and basic results	98
	3.2.	Basic symmetries yield isomorphic shuffle algebras	101
	3.3.	A note on Hadamard products	104
4.	Quasis	symmetric functions and shuffle-compatibility	105
	4.1.	The descent set shuffle algebra QSym	105
	4.2.	Shuffle-compatibility of des and (des, maj)	107
	4.3.	Shuffle-compatibility of the peak set and peak number	111
	4.4.	Shuffle-compatibility of the left peak set and left peak number	113
5.	Nonco	mmutative symmetric functions and shuffle-compatibility	116
	5.1.	Algebras, coalgebras, and graded duals	116
	5.2.	Noncommutative symmetric functions	117
	5.3.	Monoidlike elements	121
	5.4.	Implications of duality to shuffle-compatibility	122
	5.5.	Shuffle-compatibility of (pk, des)	127
	5.6.	Shuffle-compatibility of (lpk, des)	129
	5.7.	Shuffle-compatibility of udr and (udr, des)	130
6.	Miscel	lany	133
	6.1.	An alternate description of the pk and (pk, des) shuffle algebras	133
	6.2.	Non-shuffle-compatible permutation statistics	137
	6.3.	Open problems and conjectures	138
Ackno	owledgr	nents	139
Appe	ndix A.	Tables of permutation statistics	140
Refer	ences .		141

1. Introduction

We say that $\pi = \pi_1 \pi_2 \cdots \pi_n$ is a permutation of length n (or an n-permutation) if it is a sequence of n distinct letters—not necessarily from 1 to n—in \mathbb{P} , the set of positive integers. For example, $\pi = 47381$ is a permutation of length 5. Let $|\pi|$ denote the length of a permutation π and let \mathfrak{P}_n denote the set of all permutations of length n.²

A permutation statistic (or statistic) st is a function defined on permutations such that $st(\pi) = st(\sigma)$ whenever π and σ are permutations with the same relative order.³ Three classical examples of permutation statistics are the descent set Des, the descent number des, and the major index maj. We say that $i \in [n-1]$ is a descent of $\pi \in \mathfrak{P}_n$ if $\pi_i > \pi_{i+1}$. Then the descent set

$$Des(\pi) := \{ i \in [n-1] : \pi_i > \pi_{i+1} \}$$

² In Section 2, we will in a few instances consider permutations with a letter 0. We note that, in these cases, every property of permutations that is used still holds when 0 is allowed to be a letter.

³ Define the standardization of an n-permutation π to be the permutation of [n] obtained by replacing the *i*th smallest letter of π with *i* for *i* from 1 to n. Then two permutations are said to have the same relative order if they have the same standardization.

Download English Version:

https://daneshyari.com/en/article/8904747

Download Persian Version:

https://daneshyari.com/article/8904747

<u>Daneshyari.com</u>