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1. Introduction

Nonvanishing of central L-values and their derivatives of automorphic forms is an
important research topic, due to the connection between such values and various aspects
of mathematics, such as arithmetic geometry, spectral deformation theory, and ana-
lytic number theory. The combination of the method of moments and the mollification
method, popularized by Iwaniec—Sarnak [12], has been a very fruitful approach in yield-
ing positive-proportional nonvanishing results on central L-values and their derivatives
in a family of automorphic forms (see, e.g., [1], [11], [30], [15], [16], [L7], [28], [18], [4], [14],
[24], [22], and others). Along this direction we address the case of GL(2) Maass forms.
Specifically, we study the (mollified) moments of the L-functions of the Hecke-Maass
forms of weight 0 and level 1 at the central point of the critical strip, and establish a
positive-proportional nonvanishing result of such values in short intervals of the spectral
parameters (Theorem 1). As an application, this result and a formula of Katok—Sarnak
(see (5)) imply a strong nonvanishing result (Theorem 2) of the first Fourier coefficient
of Maass forms in the Kohnen plus space of weight % and level 4.

Let So(1) be the space of Maass cusp forms of weight 0 and level 1 and pick an
orthonormal basis {u;} of Hecke-Maass forms of Sy(1), where each u; has Laplace eigen-
value ; + 3 (t; > 0). (See §2.1 for a brief review of Maass forms.) Our main result is
the following

Theorem 1. Fiz n € (0,1) and let T and M be large parameters such that T" < M <
T(logT)~t. We have

#{t; | |t; = T| < M, L(},u;) > 0} > TM.

By Weyl’s law (see [31] and [5])

1 1
N(T):=#{j|t; <T}= ET2 — 5 Tlog T+ coT + O(T(logT)™1),
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