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Given a convex cone C in Rd, an integral zonotope T is the 
sum of segments [0, vi] (i = 1, . . . , m) where each vi ∈ C
is a vector with integer coordinates. The endpoint of T
is k =

∑m
1 vi. Let T (C, k) be the family of all integral 

zonotopes in C whose endpoint is k ∈ C. We prove that, for 
large k, the zonotopes in T (C, k) have a limit shape, meaning 
that, after suitable scaling, the overwhelming majority of the 
zonotopes in T (C, k) are very close to a fixed convex set. 
We also establish several combinatorial properties of a typical 
zonotope in T (C, k).
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1. Introduction and main results

This paper is about convex cones C in Rd, integral zonotopes contained in C, and 
their limit shape. The cone C is going to be closed, convex and pointed (that is no line 
lies in C) and its interior, IntC, is non-empty. We write C or Cd for the set of these 
cones.

A convex (lattice) polytope T ⊂ C is an integral zonotope if there exists m ∈ N and 
v1, . . . , vm ∈ Z

d ∩ C (that is, each vi is lattice point in C) such that

T =
{

m∑
i=1

αivi | (α1, . . . , αm) ∈ [0, 1]m
}

= Conv
{

m∑
i=1

εivi | (ε1, . . . , εm) ∈ {0, 1}m
}
.

The multiset V = {v1, . . . , vm} ⊂ Z
d determines T = T (V ) uniquely, of course, but 

not conversely. More about this later. The endpoint of T is just 
∑m

i=1 vi. Define T (C, k)
as the family of all integral zonotopes in C whose endpoint is k ∈ Z

d ∩ IntC. Clearly, 
T (C, k) is a finite set. Let p(C, k) denote its cardinality.

The main result of this paper is that, for large k, the overwhelming majority of the 
elements of T (C, k) are very close to a fixed convex set T0 = T0(C, k) which is actually 
a zonoid. We write dist(A, B) for the Hausdorff distance of the sets A, B ⊂ R

d. Here 
comes our main result.

Theorem 1.1. Given C ∈ Cd (d ≥ 2) and k ∈ IntC there is a convex set T0 = T0(C, k)
such that for every ε > 0,

lim
n→∞

card
{
T ∈ T (C, nk) | dist( 1

nT, T0) > ε
}

p(C, nk) = 0.

This result has been known for d = 2. Twenty years ago, Bárány [1], Sinai [13] and 
Vershik [15] proved the existence of a limit shape for the set of all convex lattice polygons 
lying in the square [−n, n]2 endowed with the uniform distribution. Although not all 
convex lattice polygons are (translates of) zonotopes, case d = 2 of Theorem 1.1 follows 
directly from their result. The approach of these papers relies on a natural link between 
convex lattice polygons on the first hand, and integer partitions on the other hand.

In addition to Theorem 1.1, the asymptotic behavior as n → ∞ of p(C, nk) can also 
be determined.

Theorem 1.2. Under the above conditions on C and k there is a number q(C, k) > 0 such 
that, as n tends to infinity,

n− d
d+1 log p(C, nk) −→ cd q(C,k),

where cd = d+1
√

ζ(d+1)
ζ(d) (d + 1)! depends only on the dimension.
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