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1. Introduction and main results

This paper is about convex cones C in R?, integral zonotopes contained in C, and
their limit shape. The cone C' is going to be closed, convex and pointed (that is no line
lies in C) and its interior, Int C, is non-empty. We write C or C? for the set of these
cones.

A convex (lattice) polytope T' C C' is an integral zonotope if there exists m € N and
Vi, Vi € Z4N C (that is, each v; is lattice point in C) such that

T = {Z%‘Vi | (a1,...,0m,) €0, 1]7”}
i=1
= Conv {igiw | (g1, -.,em) € {0, l}m}.

i=1

The multiset V = {vy,...,v,,} C Z? determines T' = T(V') uniquely, of course, but
not conversely. More about this later. The endpoint of 7" is just >, v;. Define T(C, k)
as the family of all integral zonotopes in C' whose endpoint is k € Z? N Int C. Clearly,
T(C,k) is a finite set. Let p(C,k) denote its cardinality.

The main result of this paper is that, for large k, the overwhelming majority of the
elements of 7(C, k) are very close to a fixed convex set Ty = Tp(C, k) which is actually
a zonoid. We write dist(4, B) for the Hausdorff distance of the sets A, B C R?. Here
comes our main result.

Theorem 1.1. Given C € C* (d > 2) and k € Int C there is a convex set Ty = To(C, k)
such that for every e > 0,

. card{T € T(C,nk) | dist(+T,Tp) > ¢}
11m =

n—00 p(C,nk) 0.

This result has been known for d = 2. Twenty years ago, Bardny [1], Sinai [13] and
Vershik [15] proved the existence of a limit shape for the set of all convex lattice polygons
lying in the square [—n,n]? endowed with the uniform distribution. Although not all
convex lattice polygons are (translates of) zonotopes, case d = 2 of Theorem 1.1 follows
directly from their result. The approach of these papers relies on a natural link between
convex lattice polygons on the first hand, and integer partitions on the other hand.

In addition to Theorem 1.1, the asymptotic behavior as n — oo of p(C,nk) can also
be determined.

Theorem 1.2. Under the above conditions on C' and k there is a number q(C,k) > 0 such
that, as n tends to infinity,

n~ @1 log p(C, nk) — cqq(C, k),

where cqg = 1/ C(Cd(—ji')l)(d + 1)! depends only on the dimension.
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