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1. Introduction

Algebraic sets, as zero sets of commutative polynomials are called, are basic objects
in algebraic geometry and commutative algebra. One of the most fundamental results is
Hilbert’s Nullstellensatz, describing polynomials vanishing on an algebraic set. A simple
special case of it is the following: if a polynomial h vanishes on a hypersurface given
as the zero set of an irreducible polynomial f, then f divides h. Various far-reaching
noncommutative versions of algebraic sets and corresponding Nullstellensétze have been
introduced and studied by several authors [3,49,44,46]. Heavily reliant on these ideas
and results are emerging areas of free real algebraic geometry [19,27] and free analysis
[41,31,1,33]. In the free context there are several natural choices for the “zero set” of a
noncommutative polynomial f. For instance, Amitsur proved a Nullstellensatz for the
set of tuples of matrices X satisfying f(X) = 0 [3], and a conclusion for pairs (X,v)
of matrix tuples X and nonzero vectors v such that f(X)v = 0 was given by Bergman
[28]. In contrast with the successes in the preceding two setups, a Nullstellensatz-type
analysis for the set of matrix tuples X making f(X) singular (not invertible), which
we call the free singularity locus of f (free locus for short), is much less developed. In
this paper we rectify this. One of our main results connects free loci with factorization
in free algebra [17,6,4,10,47] in the sense of the special case of Hilbert’s Nullstellensatz
mentioned above.
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