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If two Jordan curves in the plane have precisely one point in 
common, and there they do not properly cross, then the com-
mon point is called a touching point. The main result of this 
paper is a Crossing Lemma for simple curves: Let X and T
stand for the sets of intersection points and touching points, 
respectively, in a family of n simple curves in the plane, no 
three of which pass through the same point. If |T | > cn, 
for some fixed constant c > 0, then we prove that |X| =
Ω(|T |(log log(|T |/n))1/504). In particular, if |T |/n → ∞, then 
the number of intersection points is much larger than the num-
ber of touching points.
As a corollary, we confirm the following long-standing conjec-
ture of Richter and Thomassen: The total number of intersec-
tion points between n pairwise intersecting simple closed (i.e., 

✩ Results of this paper have been partly reported in the Proceedings of the 27th Annual ACM-SIAM 
Symposium on Discrete Algorithms, [37].
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Jordan) curves in the plane, no three of which pass through 
the same point, is at least (1 − o(1))n2.

© 2018 Published by Elsevier Inc.

1. Introduction

1.1. Preliminaries

Arrangements of curves and surfaces. It was a fruitful and surprising discovery made 
in the 1980s that the Piano Mover’s Problem and many other algorithmic and opti-
mization questions in motion planning, ray shooting, computer graphics etc., boil down 
to computing certain elementary substructures (e.g., cells, envelopes, k-levels, or zones) 
in arrangements of curves in the plane and surfaces in higher dimensions [14,29,39,43]. 
Hence, the performance of the most efficient algorithms for the solution of such problems 
is typically determined by the combinatorial complexity of a single cell or a collection of 
several cells in the underlying arrangement, that is, the total number of their faces of all 
dimensions.

The study of arrangements has brought about a renaissance of Erdős-type combinato-
rial geometry. For instance, in the plane, Erdős’s famous question [17] on the maximum 
number of times the unit distance can occur among n points in the plane can be gen-
eralized as follows [10]: What is the maximum total number of sides of n cells in an 
arrangement of n unit circles in the plane? In the limiting case, when k circles pass 
through the same point p (which is, therefore, at unit distance from k circle centers), 
p can be regarded as a degenerate cell with k sides.

Several beautiful paradigms have emerged as a result of this interplay between combi-
natorial and computational geometry, from the random sampling argument of Clarkson 
and Shor [11] through epsilon-nets (Haussler–Welzl [28]) to the discrepancy method 
(Chazelle [9]). It is worth noting that most of these tools are restricted to families of 
curves and surfaces of bounded description complexity. This roughly means that a curve 
in the family can be given by a bounded number of reals (like the coefficients of a bounded 
degree polynomial). For the exact definition, see [43].

Another tool that proved to be applicable to Erdős’s questions on repeated distances 
is the Crossing Lemma of Ajtai, Chvátal, Newborn, Szemerédi and Leighton [3,32]. It 
states that no matter how we a draw a sufficiently dense graph G = (V, E) in the plane 
or on a fixed surface, the number of crossings between its edges is at least Ω(|E|3/|V |2).

In particular, this implies that if G has a lot more edges than vertices (that is, |E|/n →
∞), then its number of crossings is much larger than its number of edges. The best 
known upper bound on the k-set problem [12], needed for the analysis of many important 
geometric algorithms, and the most elegant proofs of the Szemerédi–Trotter theorem [45], 
[46] on the maximum number of incidences between a set of points and a set of lines (or 
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