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This is the first in a series of papers devoted to the the-
ory of decomposition spaces, a general framework for inci-
dence algebras and Möbius inversion, where algebraic iden-
tities are realised by taking homotopy cardinality of equiva-
lences of ∞-groupoids. A decomposition space is a simplicial 
∞-groupoid satisfying an exactness condition, weaker than 
the Segal condition, expressed in terms of active and inert 
maps in Δ. Just as the Segal condition expresses composi-
tion, the new exactness condition expresses decomposition, 
and there is an abundance of examples in combinatorics.
After establishing some basic properties of decomposition 
spaces, the main result of this first paper shows that to any de-
composition space there is an associated incidence coalgebra, 
spanned by the space of 1-simplices, and with coefficients in 
∞-groupoids. We take a functorial viewpoint throughout, em-
phasising conservative ULF functors; these induce coalgebra 
homomorphisms. Reduction procedures in the classical the-
ory of incidence coalgebras are examples of this notion, and 
many are examples of decalage of decomposition spaces. An 
interesting class of examples of decomposition spaces beyond 
Segal spaces is provided by Hall algebras: the Waldhausen 
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S•-construction of an abelian (or stable infinity) category is 
shown to be a decomposition space.
In the second paper in this series we impose further conditions 
on decomposition spaces, to obtain a general Möbius inver-
sion principle, and to ensure that the various constructions 
and results admit a homotopy cardinality. In the third pa-
per we show that the Lawvere–Menni Hopf algebra of Möbius 
intervals is the homotopy cardinality of a certain universal 
decomposition space. Two further sequel papers deal with nu-
merous examples from combinatorics.
Note: The notion of decomposition space was arrived at in-
dependently by Dyckerhoff and Kapranov [17] who call them 
unital 2-Segal spaces. Our theory is quite orthogonal to theirs: 
the definitions are different in spirit and appearance, and the 
theories differ in terms of motivation, examples, and direc-
tions.
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Note. This paper originally formed Sections 1 and 2 of the manuscript [21], which has 
now been split into six papers.

0. Introduction

The notion of incidence algebra of a locally finite poset is an important construction 
in algebraic combinatorics, with applications to many fields of mathematics. In this work 
we generalise this construction in three directions: (1) we replace posets by categories 
and ∞-categories; (2) we replace scalar coefficients in a field by ∞-groupoids, work-
ing at the objective level, ensuring natively bijective proofs [22]; and most importantly: 
(3) we replace the Segal condition, which essentially characterises ∞-categories among 
simplicial ∞-groupoids, by a weaker condition that still allows the construction of inci-
dence algebras. Simplicial ∞-groupoids satisfying this axiom are called decomposition 
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